TO Messrs.

ALUMINUM ELECTROLYTIC CAPACITORS SPECIFICATION SHEET

RoHS Compliant part

CUSTOMER PART No.		
Rubycon PART No.	YXA SERIES	
DRAWING No.	REE ? 031448	ISSUE No. 1
ISSUE DATE	30 JUNE 2005	· · · · · · · · · · · · · · · · · · ·

RUBYCON CORPORATION ENGINEERING DIVISION

1938-1, NISHIMINOWA, INA-SHI, NAGANO-KEN, JAPAN TEL No. 0265-72-7116 FAX No. 0265-73-3380

DESIGN	
СНЕСК	KENROU FUJII
APPROVAL	

PAGE 1/181.Scope. This specification covers polarized aluminum electrolytic capacitors with non-solid electrolyte for use in electronic equipments . 2. Reference Standard JIS C 5141 (1991) and JIS C 5102 (1994) methods for testing. 3. Operating Temperature Range -55°C to +105°C (6.3 to 100 V.DC.), -40°C to +105°C (160 to 250 V.DC.), -25°C to +105°C (350 to 450 V.DC.) 4. Performance Refer to Table-1 5. Style and Numbering System (1) Style CE 04 (Radial Leaded) (2) Numbering System Rated Series Nominal Tolerance Lead Case size Voltage Capacitance Forming <u>___</u> YXA М 6. Marking Unless otherwise specified, capacitor shall be clearly marked the following items on its body. Sleeve color: Black Lettering color: White Rubycon (1) Trade mark (2) Rated Voltage V (3) Nominal Capacitance пE (4) Polarity (Negative Polarity) (5) Series ΥΧΑ (6) Lot Number (7) Maximum Operating Temperature 105°C 7. Vent On capacitors whose diameter is 6.3mm and greater, a safety vent shall be provided. 8. Notes on use of aluminum electrolytic capacitors (1) Charge and discharge Do not use for the circuit that repeats guick charge or discharge. (2) External stress Do not apply excessive force of pushing, pulling bending, and/or twisting to the main body, lead wire and terminals. (3) Heat resistance at soldering process In the soldering process of PC board with Capacitors mounted, secondary shrinkage or crack of sleeve may be observed when soldering temperature is too high and /or soldering time is too long. If lead wire of other components or pattern of double sided PC board touches the capacitor, the similar failure may be also originated at pre-heating, heating at hardening process of adhesive and soldering process. (4) Insulation and PC board mounting Sleeve is for marking purpose only. It is not recognized as insulation materials. When double sided PC board is employed, note that it could cause a short circuit if lead wire of other components or pattern of double sided PC board touches capacitor. Please avoid circuit pattern runs underneath capacitor. In addition, case and cathode terminal are not insulated. (5) Adhesives and coating materials Do not use the adhesives and coating materials that contain halogenated organic solvents or chloroprene as polymer. (6) Storage Keep at a normal temperature and humidity. During a long storage time, leakage current will be increased. To prevent heat rise or any trouble that high leakage current possibly causes, voltage treatment is recommended for the capacitors that have been stored for a long time. .<Storage Condition> *Aluminum electrolytic capacitors should not be stored in high temperatures or where there is a high level of humidity. The suitable storage condition is 5°C-35°C and less than 75% in relative humidity. *Aluminum electrolytic capacitors should not be stored in damp conditions such as water, saltwater spray or oil spray. *Do not store aluminum electrolytic capacitors in an environment full of hazardous gas (hydrogen sulfide, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or bromine gas). *Aluminum electrolytic capacitors should not be stored under exposure to ozone, ultraviolet rays or radiation. Rubycon YXA SERIES RUBYCON CORPORATION

PAGE 2/18

(7) Fumigation and halogenated flame retardant

It may cause corrosion of internal electrodes, aluminum cases and terminal surface when the following conditions exist. *Fumigation of wooden pallets before shipment to disinfect vermin.

*Existence of components or parts that contain halogenated flame retardant agent (bromine etc.) together with capacitors.

*When halogenated detergents or antiseptics for preventing infection of epidemic diseases contact directly to capacitors.

(8) PC board cleaning after soldering

Please consult us when cleaning is subjected.

♦ Guide to application except the above are described in our catalog and EIAJ RCR-2367B

EIAJ RCR-2367B : "Guideline of notabilia for fixed aluminum electrolytic capacitors for use in electronic equipment." Published by Electronic Industries Association of Japan.

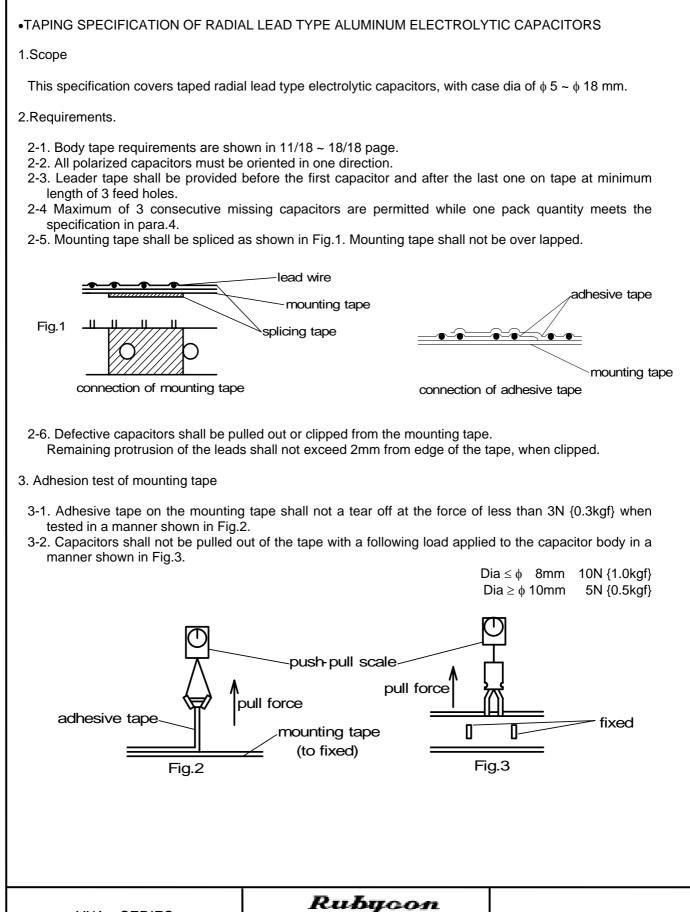
											P	AGE	3 / 18
♦Tal	ble-1 PERFORMANCE												
	ITEMS					PER	FORMA	ANCE					
1	Rated Voltage(WV)	WV(V.DC	c) 6.3	10	16	25	35	50	63	100	160	200	
	Surge Voltage (SV)	SV(V.DC		13	20	32	44	63	79	125	200	200	
		01(1.00	, 0		20	02	1	00	10	120	200	200	
		WV(V.DC	250	350	400	450							
		SV(V.DC) 300	400	450	500							
2	Nominal Capacitance (Tolerance)	Measuring	μF(±20%) g Frequency g Voltage g Temperati	: No	t more t	% han 0.5'	Vrms +	1.5 to 2	.0V.DC]			
3	Leakage Current	<condition> The rated voltage shall be applied between terminals of capacitor such that the terminal voltage will reach the rated voltage within one minute and the leakage current shall be measured at following time after the voltage has reached the rated voltage across a 1000 ±10 Ω series protection resister. Then the current value shall not exceed value calculated from following formula. <criteria> 6.3 to 100V. DC (after 2minutes) I=0.01CV or 3µA whichever is greater 160 to 450V. DC (after 1 minute) I=0.1CV +40µA (CV≤1000) I=0.03CV +15µA (CV≤1000) I=0.04CV +100µA (CV>1000) </criteria></condition>								wing time			
			C : Nom V : Rate										
4	Dissipation Factor	<criteria></criteria>											
	$(tan\delta:Tangent of loss angle)$	WV(V.D	C) 6.3	10	16	25	35	50	63	100			
		tanδ	0.26	0.22	0.18	0.16	0.14	0.12	0.10	0.08			
		WV(V.D	C) 160	200	250	350	400	450					
		tanδ	0.20	0.20	0.20	0.24	0.24	0.24					
		When no with increas <condition> See ITEM 2</condition>		1000μF.									ed value
	YXA SERIES			Ru BYCC				ON					

5	Terminal Strength	Ter	ondition> nsile Stren The body rminal in le	of capaci	itor shall						owing ta	able sha	all be app	olied to
		be co po	nding Strei The body ecomes ve ondition, af osition. Ne osition.	of capacit ertical. The fter the b	tor shall e weight ody of s	be held t of follo sample	owing ta is bent	able sha t through	all be su h 90 de	ispende grees, i	d from it shall	the end be retu	d of termi rned to t	inal. In t the origi
			Diameter	r of lead w	vire		Te	nsile for N{kgf}	се		nding fo N{kgf}		7	
			0.5mm a	nd less				5{0.51}			5{0.25}		-	
			Over 0.5	mm to 0.8	3mm inc	1	1(0{1.0}			5 {0.51}			
6	Temperature Coefficient and Drift	1	riteria> Notable ch	anges sha	all not b	e found,	, as bre	akage o	r loosen	iess in t	he term	iinal.		
			STEP	Testing	Temper	ature (°0	C)			Time				
			1	J	20±2	2		Time	e to read	ch thern	nal equi	ilibrium		
			2	J	-40±	:3				//				
			3	J	-25±	:3				//				
			4	<u> </u>	20±2	2				//				
			5	<u> </u>	105±	-2				2 hrs.				
			6	l	20±2				e to read		nal equi	ilibrium		
			pacitance, ted voltage						at 120F	lz.				
		<c < td=""><td>riteria> STEP 2,3</td><td>3 Impe</td><td>edance l</td><td>Ratio</td><td></td><td>followin</td><td>ng table</td><td></td><td></td><td></td><td>re than v</td><td></td></c <>	riteria> STEP 2,3	3 Impe	edance l	Ratio		followin	ng table				re than v	
			STEP 5	Cap	acitance	Chang	je						llue of ST alue of S⁻	
					sipation I				ore than	-				
			STEP 6		kage Cu								alue	
					acitance		,e		±10% of ore than					
					kage Cu				ore than					
			WV(V	.DC)	6.3	10	16	25	35	50	63	100	160	
			Z(-25°C)/Z	∠(+20°C)	4	3	2	2	2	2	2	2	3	
			Z(-40°C)/Z	. ,	8	6	4	4	3	3	3	3	_	
			WV(V	.DC)	200	250	350	400	450					
			Z(-25°C)/Z	<u>′(</u> +20°C)	3	3	6	6	6					
		1 1							1					

					PAGE	5 / 18
7	Load Life Test	(with ma	itors shall be applied th aximum ripple current)	ne rated voltage continuously through 1000 at 105±2°C for following test period. Aff urs, and the capacitor shall meet following	ter the test and ret	
				ife Time		
				1000 ⁺⁴⁸		
		· · ·		$2000 + 72 \\ 0 \\ 2000 + 72 \\ - 72 \\ $		
		φD	≥12.5	3000 ⁺⁷² 0		
		<criteria></criteria>		Not see the starting of the second		7
			ge Current	Not more than the specified value		_
			itance Change	Within ±25% of the initial value	luo	_
			ation Factor	Not more than 200% of the specified va	lue	_
		Appea	Tance	Notable changes shall not be found		
8	Shelf Life Test	returned	itors shall be stored at in standard condition f ot arises on the judgen 41,5.2.)	105±2°C with no voltage applied for 1000 for 1 to 2 hours and the capacitor shall me nent, the capacitors shall be subjected to v	et following requiren	nents. (If
			ge Current	Not more than the specified value		
		Capac	itance Change	Within $\pm 25\%$ of the initial value		
		Dissipa	ation Factor	Not more than 200% of the specified value	9	
		Appea	rance	Notable changes shall not be found		
9	Surge Voltage	for 30∃ Then t [C _R : № < <u>Criteria</u> >	itors shall be applied th ≟5 seconds in every 6±(he capacitors shall be l lominal Capacitance (μ	he surge voltage through a (100±50)/C _R [kg 0.5 minutes at 15 to 35°C. Procedure shall eft under normal humidity for 1 to 2 hours b (F)] Not more than the specified value	be repeated 1000 tir	nes.
		Capac	itance Change	Within $\pm 15\%$ of the initial value		
			ation Factor	Not more than the specified value		
		Appea	rance	Notable changes shall not be found		
			t simulates overvoltagi applied.	e at abnormal situations, and not be hypo	thesizing that overv	oltage is
10	Vibration Test	Fix lea one with	g shall be done out in 3 Id wire at a point not m a diameter 12.5mm an on frequency range : 2 o peak amplitude : 2	AXIS for 2 hours each (total 6 hours) as be hore than 4mm from the body , use mounti ad greater or with a length 25mm and longe 10 to 55Hz 1.5mm 10 to 55 to 10Hz, In about 1min.	ng device separately	y for the
·	YXA	SERIES		N CORPORATION		

							1		
								PAGE	6 /
		_							
		<criteria< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td></td></criteria<>	>						
		Capacita (During		the vibration	alue shall be from one er on frequenc last directior	nd to the ot cy within la			
		Capacita	ance Change	Within ±5%	of the initial	value			
		Appeara	ince	Notable cha	nges shall n	ot be found			
11	Solderability	for 5 to 10 and pulled <criteria></criteria>	 Is of the capacitor s seconds and shall l out at the same spectrum 3/4 of circumferent 	be immersed in t eed.	he solder ba	th (235±5°C	c) and hel	d for 2±0.5 se	conds,
2	Resistance to Solder Heat	to 2.0mm Then the	Is of the capacitor s from the body of cap e capacitors shall be asurement.	pacitor.					
		<criteria></criteria>		i					
		Leakage	Current	Not more than	the specifie	d value			
		Capacita	ance Change	Within ±10% o	f the initial v	alue			
		Dissipat	ion Factor	Not more than	the specifie	d value			
		Appeara	ince	Notable chang	es shall not	be found			
13	Resistance to Damp Heat (Steady State)	Then the before me <criteria></criteria>	> or shall be stored in e capacitors shall be asurement. • • Current		ormal tempe	erature and			
				6.3 to 100WV			al value		
		Capacita	ance Change	160 to 450WV					
		Dissipat	ion Factor	Not more than	the specifie	d value			
		Appeara	ince	Notable chang	es shall not	be found			
14	Maximum Permissible Ripple Current	applied a (2)The com	imum permissible ri t maximum operatir bined value of D.C. and shall not be reve	g temperature. voltage and the					
		< Frequency	/ Coefficient>						-
			Frequency(Hz) 60(50)	120	500	1k	10k≤	
		Capacita	ance(µF)		120	000			
			0.1 to 1	0.50	1.0	1.20	1.30	1.50	
			2.2 to 4.7	0.65	1.0	1.20	1.30	1.50	
			10 to 47	0.80	1.0	1.20	1.30	1.50	
			100 to 1000	0.80	1.0	1.10	1.15	1.20	
			2200 to 22000	0.80	1.0	1.05	1.10	1.15	
							I		
	YXA SERIES								

PAGE 7 / 18


			<u> </u>											
			< 1	empera	ature Co	pefficient >	>							
				Ambi	ent Ten	nperature(°C)	10	5	85	65	≥		
				Coeff	icient			1.0)	1.7	2.1	1		
			pa be ≎U cl W	assed th e nearly se of al harge-d Vhen rip	nrough equal v uminun ischarg ple vol	a capacito with the life n electroly e operatio	or at eac etime at t tic capac on. the amp	h tem he ra	perature ted maxir nder ripp	when num o le volt	the life e perating age with	expectan tempera wide an	ted ripple curren cy of a capacito ture. nplitude is equiv e products with	or becomes valent to qu
Diagram of di	mensio	ons. :	unit mm											
	1) (2		3			¢d+≁ ↓	(5 ⊕ -{ ⊖ -{			E +/. 0 5		
*	L+	αΜΑλ	<	15N	ЛIN	4M	IN >		-	~ م لا	+0.5N	IAX		
Table-2			I			I	I		, ∎Ta	ble-3	ļ			
φD		5	6.3	8	10	12.5	16	18		1	Sleeve	Ī	P.V.C. (Lead Fr	ee)
F		2.0	2.5	3.5	5.0	5.0	7.5	7.5	5	2	Case		Aluminum	,
φd		0.5	0.5	0.6	0.6	0.6	0.8	0.8		3	Lead W	/ire	Tin plated	
6.3 to 100	WV	0.0	0.0	1.5	0.0	0.0		.0		•	2000		· · · · p.atoa	
160 to 450 Table-4 Star		size, Ma:	ximum pe	rmissibl		2.0 e current		16	Size	∳DXL	(<u>mm), Ri</u> j 25	ople Cur	rent(mA r.m.s./1	<u>05°C,120H</u>
Cap	<u>م</u>	Size	Ripple	Siz	-	Ripple	Size	-	Ripple		Size	Ripple		Ripple
(μF) 22			i vippic			i tippio	0120		, uppic	+	0120	1 tipple	5X11	64
33											5X11	69	5X11	77
47							5X1	1	80	-	5X11	84	5X11	100
100	5`	X11	96	5X	11	105	5X1		130		3X11	140	6.3X11	170
220		X11	160	6.3X		175	6.3X1		220		3X11.5	240	10X12.5	300
330	6.3		210	6.3X		235	8X1		270)X12.5	335	10X12.5	400
470	6.3		275		11.5	295	8X1		375	-	0X12.5	440	10X12.0	525
1000		X11.5	460		12.5	540	10X1		640	-)X20	740	12.5X20	865
2200	-	X20	775	10X		860	12.5X2		1050		5X25	1230	16X25	1370
3300		X20	985	12.5X		1100	12.5X2		1300	-	6X25	1500	16X35.5	1680
	12.5		1150	12.5X		1350	16X2		1650		6X31.5	1800	18X35.5	1920
4700	-		1480	16X		1700	16X3		1900		3X35.5	2050		
4700 6800	12.5	AZO 1						-		1 1			1	1
			1700	16X		1950	18X3	5.5	2070					
6800	162	X25 X25 X35.5			35.5 35.5	1950 2180	18X3	5.5	2070					

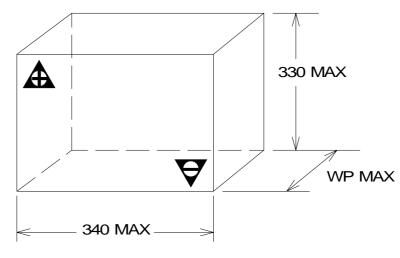
YXA SERIES

PAGE 8 / 18

200	200		160		100	63			50	WV
Rippl	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Cap (µF)
								1	5X11	0.1
								1.5	5X11	0.15
								2.5	5X11	0.22
								4	5X11	0.33
				8	5X11			7	5X11	0.47
				15	5X11			13	5X11	1
				21	5X11			20	5X11	2.2
36	6.3X11			30	5X11			25	5X11	3.3
5 50	8X11.5	43	6.3X11	35	5X11			32	5X11	4.7
5 80	10X12.5	77	8X11.5	60	5X11	48	5X11	47	5X11	10
135	10X20	125	10X16	98	6.3X11	80	5X11	70	5X11	22
200	12.5X20	170	10X20	140	8X11.5	100	6.3X11	94	5X11	33
220	12.5X20	210	12.5X20	185	10X12.5	140	6.3X11	115	6.3X11	47
340	16X25	320	12.5X25	290	10X20	230	10X12.5	200	8X11.5	100
5 580	18X35.5	580	16X35.5	560	12.5X25	390	10X16	360	10X12.5	220
		700	18X35.5	690	12.5X25	540	10X20	470	10X16	330
				880	16X25	700	12.5X20	600	10X20	470
				985	18X40	1200	16X25	1060	12.5X25	1000
						1650	18X35.5	1600	16X35.5	2200
								1780	18X35.5	3300

WV Cap	250		350		400		450	
(μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
0.47	6.3X11	8	6.3X11	8				
1	6.3X11	16	6.3X11	16	6.3X11	16	8X11.5	15
2.2	6.3X11	30	8X11.5	31	10X12.5	31	10X12.5	25
3.3	8X11.5	43	10X12.5	45	10X12.5	41	10X16	33
4.7	8X11.5	53	10X12.5	55	10X16	55	10X20	42
10	10X16	90	10X20	95	12.5X20	85	12.5X20	67
22	12.5X20	150	12.5X25	175	12.5X25	170	16X25	115
33	12.5X20	200	16X25	220	16X25	220	16X31.5	155
47	12.5X25	240	16X31.5	260	16X31.5	275	16X35.5	185
100	16X31.5	400	18X40	415	18X40	415		

RUBYCON CORPORATION


YXA SERIES

4.Package

Taped capacitors shall be packed in a carton shown in Fig.4, with tape ammunition.

Packed cartons shall be marked at least polarity, rated voltage, nominal capacitance and quantity.

On case dia ϕ 10mm, ϕ 12.5mm and ϕ 16mm, one capacitor shall be removed at each bend of the tape.

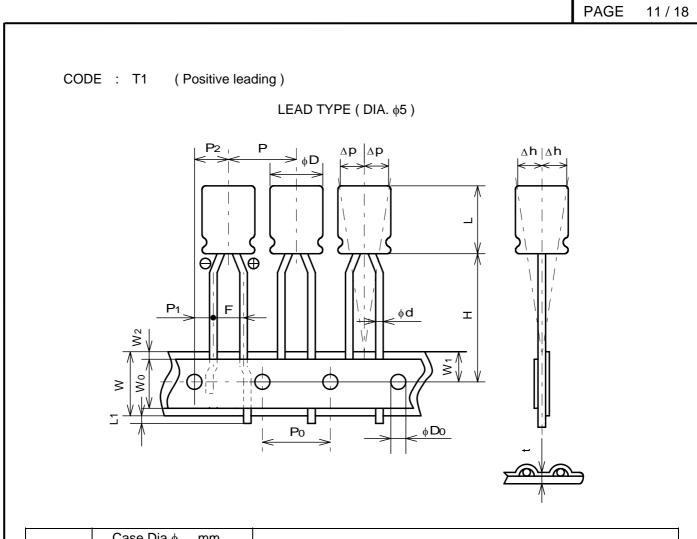
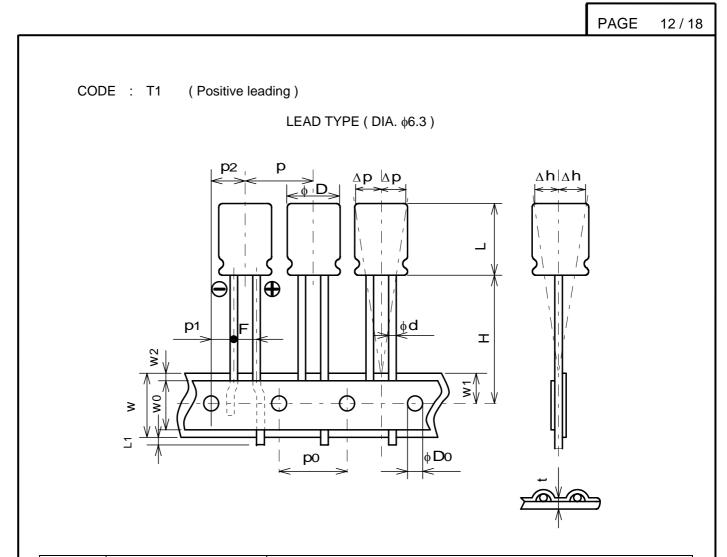
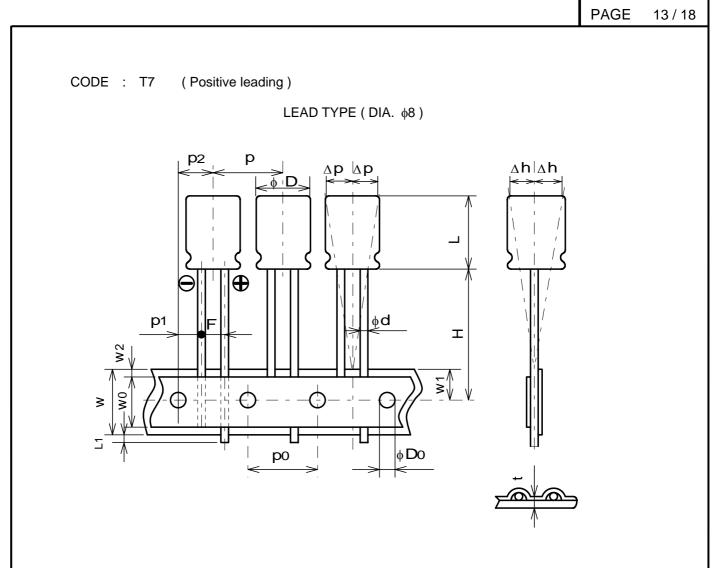
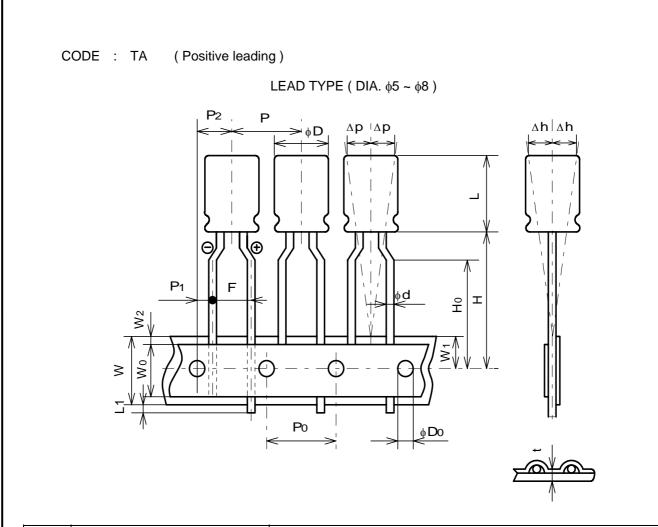


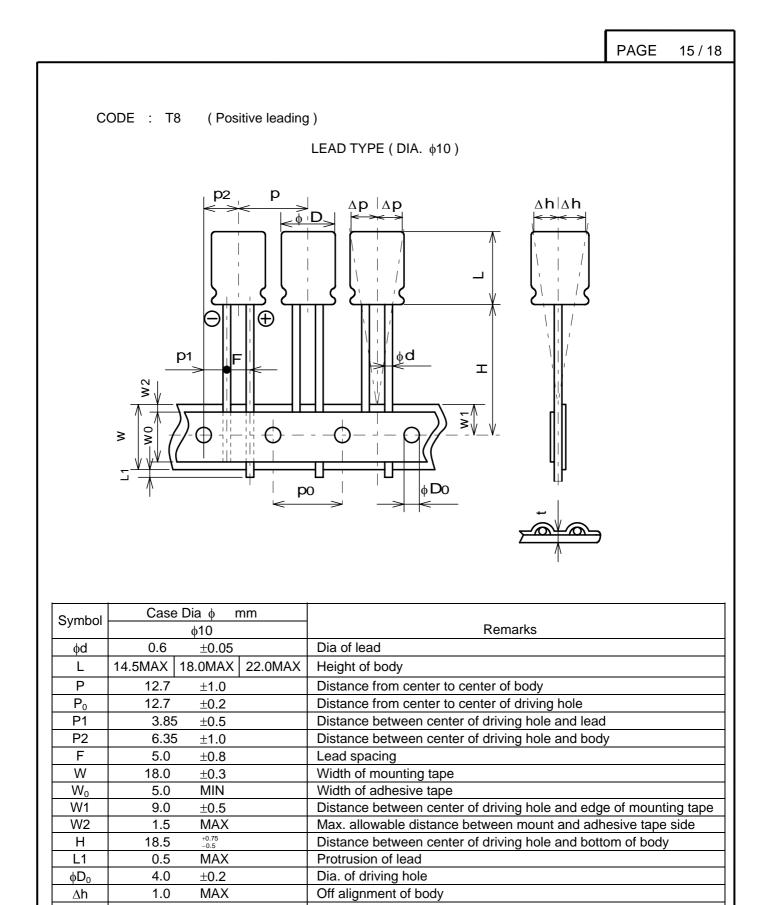
Fig.4


CASE DIA	QUANTITY	WP(mm)
φ5X11L	2000	54
φ6.3X11L	1000	54
φ8X11.5L	1000	54
φ10X12.5L	500	60
φ10X16L	500	65
φ10X20L	500	70
φ12.5X20L	500	70
φ12.5X25L	500	70
φ16X25L	250	75
φ16X31.5L	250	85
φ16X35.5L	250	85
φ18X35.5L	250	85
φ18X40L	250	85

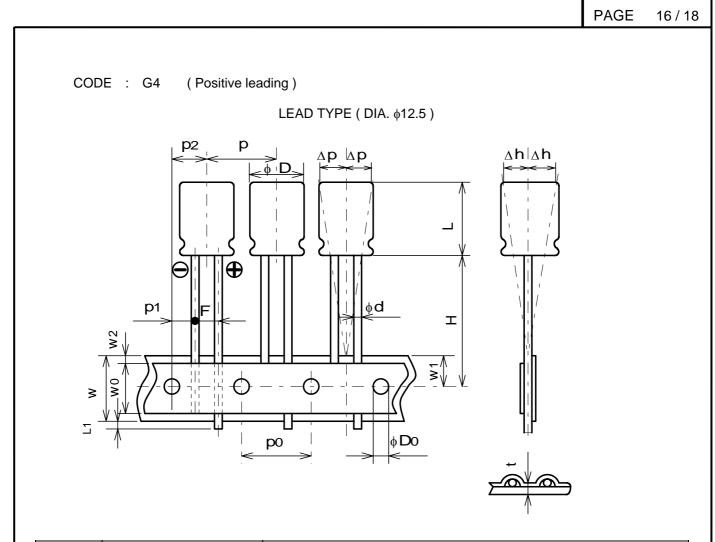
STANDARD PACKING QUANTITY


YXA SERIES


Symbol	Case Dia ϕ mm	
Symbol	φ5	Remarks
φd	0.5 ±0.05	Dia of lead
L	12.5 MAX	Hight of body
Р	12.7 ±1.0	Distance from center to center of body
P ₀	12.7 ±0.2	Distance from center to center of driving hole
P1	5.1 ±0.5	Distance between center of driving hole and lead
P2	6.35 ±1.0	Distance between center of driving hole and body
F	2.5 ^{+0.8} _{-0.2}	Lead spacing
W	18.0 ±0.3	Width of mounting tape
W ₀	5.0 MIN	Width of adhesive tape
W1	9.0 ±0.5	Distance between center of driving hole and edge of mounting tape
W2	1.5 MAX	Max. allowable distance between mount and adhesive tape side
Н	18.5 ±0.75	Distance between center of driving hole and bottom of body
L1	0.5 MAX	Protrusion of lead
φD ₀	4.0 ±0.2	Dia. of driving hole
Δh	1.0 MAX	Off alignment of body
Δp	1.0 MAX	Off alignment of body
t	0.6 ±0.3	Sum of thickness for mounting and adhesive tape without lead dia.

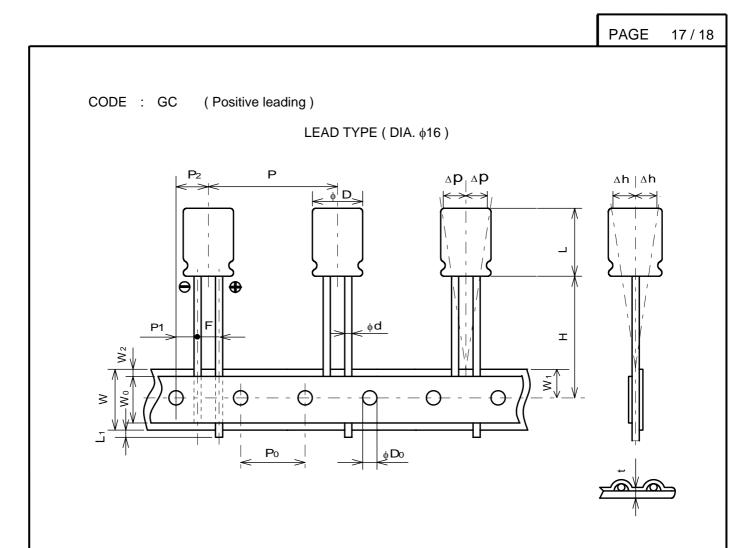

Symbol	Case Dia ϕ mm	
Symbol	φ6.3	Remarks
φd	0.5 ±0.05	Dia of lead
L	13.0 MAX	Height of body
Р	12.7 ±1.0	Distance from center to center of body
P ₀	12.7 ±0.2	Distance from center to center of driving hole
P1	5.1 ±0.5	Distance between center of driving hole and lead
P2	6.35 ±1.0	Distance between center of driving hole and body
F	2.5 ^{+0.8} _{-0.2}	Lead spacing
W	18.0 ±0.3	Width of mounting tape
W ₀	5.0 MIN	Width of adhesive tape
W1	9.0 ±0.5	Distance between center of driving hole and edge of mounting tape
W2	1.5 MAX	Max. allowable distance between mount and adhesive tape side
Н	18.5 ±0.75	Distance between center of driving hole and bottom of body
L1	0.5 MAX	Protrusion of lead
φD₀	4.0 ±0.2	Dia. of driving hole
∆h	1.0 MAX	Off alignment of body
Δр	1.0 MAX	Off alignment of body
t	0.6 ±0.3	Sum of thickness for mounting and adhesive tape without lead dia.

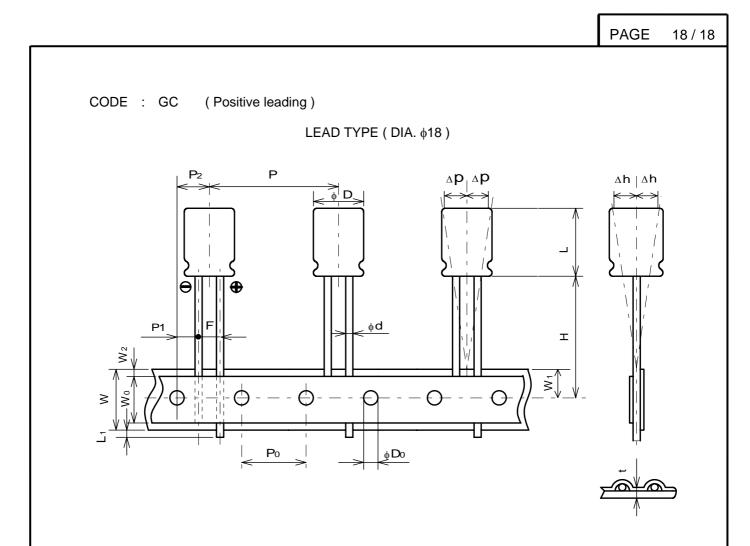
Symbol	Case Dia ∳ mm	
Symbol	φ8	Remarks
φd	0.6 ±0.05	Dia of lead
L	13.5 MAX	Height of body
Р	12.7 ±1.0	Distance from center to center of body
P ₀	12.7 ±0.2	Distance from center to center of driving hole
P1	4.6 ±0.5	Distance between center of driving hole and lead
P2	6.35 ±1.0	Distance between center of driving hole and body
F	3.5 +0.8 -0.2	Lead spacing
W	18.0 ±0.3	Width of mounting tape
W ₀	5.0 MIN	Width of adhesive tape
W1	9.0 ±0.5	Distance between center of driving hole and edge of mounting tape
W2	1.5 MAX	Max. allowable distance between mount and adhesive tape side
Н	20.0 ±0.75	Distance between center of driving hole and bottom of body
L1	0.5 MAX	Protrusion of lead
φD₀	4.0 ±0.2	Dia. of driving hole
∆h	1.0 MAX	Off alignment of body
∆р	1.0 MAX	Off alignment of body
t	0.6 ±0.3	Sum of thickness for mounting and adhesive tape without lead dia.


Symbol	Case Dia ∳ mm			Demerke
	φ5	φ 6. 3	φ8	Remarks
φd	0.5±0.	05	0.6±0.05	Dia of lead
L	12.5MAX	13.0MAX	13.5MAX	Hight of body
Р		12.7	±1.0	Distance from center to center of body
P_0		12.7	±0.2	Distance from center to center of driving hole
P1		3.85	±0.5	Distance between center of driving hole and lead
P2		6.35	±1.0	Distance between center of driving hole and body
F		5.0	+0.8 -0.2	Lead spacing
W		18.0	±0.3	Width of mounting tape
W ₀		5.0	MIN	Width of adhesive tape
W1		9.0	±0.5	Distance between center of driving hole and edge of mounting tape
W2		1.5	MAX	Max. allowable distance between mount and adhesive tape side
Н	18.5	±0.75	20.0±0.75	Distance between center of driving hole and bottom of body
H ₀		16.0	±0.5	Distance between center of driving hole and clinch of lead
L1		0.5	MAX	Protrusion of lead
φD₀		4.0	±0.2	Dia. of driving hole
Δh		1.0	MAX	Off alignment of body
Δр		1.0	MAX	Off alignment of body
t		0.6	±0.3	Sum of thickness for mounting and adhesive tape without lead dia.

 ∆p
 1.0
 MAX
 Off alignment of body

 t
 0.6
 ±0.3
 Sum of thickness for mounting and adhesive tape without lead dia.


YXA SERIES


Symbol	Case Dia ϕ mm		
Symbol	φ12.5		Remarks
φd	0.6	±0.05	Dia of lead
L	22.0MAX	27.0MAX	Hight of body
Р	15.0	±1.0	Distance from center to center of body
P ₀	15.0	±0.2	Distance from center to center of driving hole
P1	5.0	±0.5	Distance between center of driving hole and lead
P2	7.5	±1.0	Distance between center of driving hole and body
F	5.0	±0.8	Lead spacing
W	18.0	±0.3	Width of mounting tape
W ₀	5.0	MIN	Width of adhesive tape
W1	9.0	±0.5	Distance between center of driving hole and edge of mounting tape
W2	1.5	MAX	Max. allowable distance between mount and adhesive tape side
Н	18.5	+0.75 -0.5	Distance between center of driving hole and bottom of body
L1	0.5	MAX	Protrusion of lead
φD ₀	4.0	±0.2	Dia. of driving hole
Δh	1.0	MAX	Off alignment of body
Δр	1.0	MAX	Off alignment of body
t	0.6	±0.3	Sum of thickness for mounting and adhesive tape without lead dia.

Rubycon RUBYCON CORPORATION

YXA SERIES

Symbol	Case D	Dia∮ mm	
Symbol		φ 16	Remarks
φd	0.8	±0.05	Dia of lead
L	27.0MAX 3	3.5MAX 37.5MAX	Height of body
Р	30.0	±1.0	Distance from center to center of body
P ₀	15.0	±0.3	Distance from center to center of driving hole
P1	3.75	±0.5	Distance between center of driving hole and lead
P2	7.5	±1.0	Distance between center of driving hole and body
F	7.5	±0.8	Lead spacing
W	18.0	±0.3	Width of mounting tape
W ₀	5.0	MIN	Width of adhesive tape
W1	9.0	±0.5	Distance between center of driving hole and edge of mounting tape
W2	1.5	MAX	Max. allowable distance between mount and adhesive tape side
Н	18.5	+0.75 -0.5	Distance between center of driving hole and bottom of body
L1	0.5	MAX	Protrusion of lead
ϕD_0	4.0	±0.2	Dia. of driving hole
Δh	1.0	MAX	Off alignment of body
Δр	1.0	MAX	Off alignment of body
t	0.6	±0.3	Sum of thickness for mounting and adhesive tape without lead dia.

Symbol	Case Dia	φ mm	
Symbol	φ18		Remarks
φd	0.8	±0.05	Dia of lead
L	37.5MAX	42.0MAX	Height of body
Р	30.0	±1.0	Distance from center to center of body
P ₀	15.0	±0.3	Distance from center to center of driving hole
P1	3.75	±0.5	Distance between center of driving hole and lead
P2	7.5	±1.0	Distance between center of driving hole and body
F	7.5	±0.8	Lead spacing
W	18.0	±0.3	Width of mounting tape
W ₀	5.0	MIN	Width of adhesive tape
W1	9.0	±0.5	Distance between center of driving hole and edge of mounting tape
W2	1.5	MAX	Max. allowable distance between mount and adhesive tape side
Н	18.5	+0.75 -0.5	Distance between center of driving hole and bottom of body
L1	0.5	MAX	Protrusion of lead
φD₀	4.0	±0.2	Dia. of driving hole
∆h	1.0	MAX	Off alignment of body
∆р	1.0	MAX	Off alignment of body
t	0.6	±0.3	Sum of thickness for mounting and adhesive tape without lead dia.