GENERAL DESCRIPTION

The SGM72112B is a dual single-pole/six-throw (2xSP6T) antenna switch, which supports from 0.1 GHz to 3.8 GHz . The device features low insertion loss and high isolation, which make it suitable for high linearity receiving applications. It also has the advantage of High linearity performance. The SGM72112B is applied diversity receiving in carrier aggregation applications.

The SGM72112B has the ability to SP12T RF switch and MIPI controller on silicon-on-insulator (SOI) process, Internal driver and decoder for switch control signals, which makes it flexible in RF path band and routing selection.

No external DC blocking capacitors required on the RF paths as long as no external DC voltage is applied, which can save PCB area and cost.

The SGM72112B is available in a Green ULGA-2.4× 2-18L package.

APPLICATIONS

3G/4G Applications
Carrier Aggregation Diversity

FEATURES

- Supply Voltage Range: 2.4V to 4.8 V
- Advanced Silicon-On-Insulator (SOI) Process
- Frequency Range: 0.1GHz to 3.8 GHz
- Low Insertion Loss: 0.6dB (TYP) at 3.8 GHz
- MIPI RFFE Interface Compatible
- No External DC Blocking Capacitors Required
- Available in a Green ULGA-2.4×2-18L Package

BLOCK DIAGRAM

Figure 1. SGM72112B Block Diagram

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM 72112 B	ULGA $-2.4 \times 2-18 \mathrm{~L}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SGM 72112 BYULB18G/TR	SGMPC XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS \& HSF): PS Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your PSMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, VDD .. 5 V
Supply Voltage (MIPI), Vı ... 2 V
SDA, SCL Control Voltage ... 2 V
RF Input Power, Pin ... 26 dBm
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) $+260^{\circ} \mathrm{C}$
ESD Susceptibility HBM..1000V
RECOMMENDED OPERATING CONDITIONS
Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Frequency Range..................... 0.1 GHz to 3.8 GHz
Supply Voltage, VDD .2.4V to 4.8 V
Supply Voltage (MIPI), VIo1.65V to 1.95 V

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. PSMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

PS Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

FEBRUARY 2022

PIN CONFIGURATION

Figure 2. SGM72112B-18L

PIN DESCRIPTION

PIN	NAME	FUNCTION	PIN	NAME	FUNCTION
1	RFB2	RF Port B2.	10	RFA6	RF Port A6.
2	RFB3	RF Port B3.	11	RFA5	RF Port A5.
3	RFB4	RF Port B4.	12	RFA4	RF Port A4.
4	RFB5	RF Port B5.	13	RFA3	RF Port A3.
5	RFB6	RF Port B6.	14	RFA2	RF Port A2.
6	VDD	DC Power Supply	15	RFA1	RF Port A1.
7	VIO	Supply voltage for MIPI.	16	RFCOM_A	RF Common Port A.
8	SDA	RFFE Data Signal.	17	RFCOM_B	RF Common Port B.
9	SCL	RFFE Clock Signal.	18	RFB1	RF Port B1.
Exposed Pad	GND	Ground.			

Register_0 TRUTH TABLE (RFCOM_B)

Table 1. Register_0 Truth Table (RFCOM_B)

State	Mode	Register_0 Bits							
		D7	D6	D5	D4	D3	D2	D1	D0
1	All Isolation	0	0	0	0	0	0	0	0
2	RFB1	0	0	0	0	0	0	0	1
3	RFB2	0	0	0	0	0	0	1	0
4	RFB3	0	0	0	0	0	0	1	1
5	RFB4	0	0	0	0	0	1	0	0
6	RFB5	0	0	0	0	0	1	0	1
7	RFB6	0	0	0	0	0	1	1	0
8	RFB6+5	0	0	0	0	0	1	1	1
9	RFB6+4	0	0	0	0	1	0	0	0

Register_0 TRUTH TABLE (RFCOM_B) (continued)

State	Mode	Register_0 Bits							
		D7	D6	D5	D4	D3	D2	D1	D0
10	RFB6+3	0	0	0	0	1	0	0	1
11	RFB6+2	0	0	0	0	1	0	1	0
12	RFB6+1	0	0	0	0	1	0	1	1
13	RFB5+4	0	0	0	0	1	1	0	0
14	RFB5+3	0	0	0	0	1	1	0	1
15	RFB5+2	0	0	0	0	1	1	1	0
16	RFB5+1	0	0	0	0	1	1	1	1
17	RFB4+3	0	0	0	1	0	0	0	0
18	RFB4+2	0	0	0	1	0	0	0	1
19	RFB4+1	0	0	0	1	0	0	1	0
20	RFB3+2	0	0	0	1	0	0	1	1
21	RFB3+1	0	0	0	1	0	1	0	0
22	RFB2+1	0	0	0	1	0	1	0	1

Register_1 TRUTH TABLE (RFCOM_A)

Table 2. Register_1 TRUTH TABLE (RFCOM_A)

State	Mode	Register_0 Bits							
		D7	D6	D5	D4	D3	D2	D1	D0
1	All Isolation	0	0	0	0	0	0	0	0
2	RFA1	0	0	0	0	0	0	0	1
3	RFA2	0	0	0	0	0	0	1	0
4	RFA3	0	0	0	0	0	0	1	1
5	RFA4	0	0	0	0	0	1	0	0
6	RFA5	0	0	0	0	0	1	0	1
7	RFA6	0	0	0	0	0	1	1	0
8	RFA6+5	0	0	0	0	0	1	1	1
9	RFA6+4	0	0	0	0	1	0	0	0
10	RFA6+3	0	0	0	0	1	0	0	1
11	RFA6+2	0	0	0	0	1	0	1	0
12	RFA6+1	0	0	0	0	1	0	1	1
13	RFA5+4	0	0	0	0	1	1	0	0
14	RFA5+3	0	0	0	0	1	1	0	1
15	RFA5+2	0	0	0	0	1	1	1	0
16	RFA5+1	0	0	0	0	1	1	1	1
17	RFA4+3	0	0	0	1	0	0	0	0
18	RFA4+2	0	0	0	1	0	0	0	1
19	RFA4+1	0	0	0	1	0	0	1	0
20	RFA3+2	0	0	0	1	0	0	1	1
21	RFA3+1	0	0	0	1	0	1	0	0
22	RFA2+1	0	0	0	1	0	1	0	1

ELECTRICAL CHARACTERISTICS

(Typical values, $\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{P} I \mathrm{~N}=0 \mathrm{dBm}, 50 \Omega$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC Specifications						
Supply Voltage	$V_{\text {DD }}$		2.4	2.8	4.8	V
Supply Current	I_{DD}			32	60	$\mu \mathrm{A}$
V_{10} Supply Voltage	V_{10}		1.65	1.8	1.95	V
V_{10} Supply Current	10			4.8	10	$\mu \mathrm{A}$
Control Voltage	$\mathrm{V}_{\text {CTL_H }}$	High	$0.8 \times \mathrm{V}_{10}$	V_{10}	1.95	V
	$\mathrm{V}_{\text {CTL_L }}$	Low	0		0.45	
Switching Time	$\mathrm{t}_{\text {sw }}$	50\% of control voltage to 90\% of RF power		1	2	$\mu \mathrm{s}$
Turn-On Time	t_{ON}	Time from $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ to part on and RF at 90%		5	10	$\mu \mathrm{s}$
RF Specifications						
Insertion Loss (RFCOM to All RF Ports)	IL	$\mathrm{f}_{0}=0.1 \mathrm{GHz}$ to 1.0 GHz		0.40	0.6	dB
		$\mathrm{f}_{0}=1.0 \mathrm{GHz}$ to 2.0 GHz		0.50	0.7	
		$\mathrm{f}_{0}=2.0 \mathrm{GHz}$ to 2.7 GHz		0.60	0.8	
		$\mathrm{f}_{0}=2.7 \mathrm{GHz}$ to 3.8 GHz	A	1.0	1.3	
Isolation (RFCOM_A to any OFF RFA port; RFCOM_B to any OFF RFB port)	ISO	$\mathrm{f}_{0}=0.1 \mathrm{GHz}$ to 1.0 GHz	22	25		dB
		$\mathrm{f}_{0}=1.0 \mathrm{GHz}$ to 2.0 GHz	17	20		
		$\mathrm{f}_{0}=2.0 \mathrm{GHz}$ to 2.7 GHz	14	17		
		$\mathrm{f}_{0}=2.7 \mathrm{GHz}$ to 3.8 GHz	12	15		
Isolation (RFCOM_A to RFCOM_B)	ISO	$\mathrm{f}_{0}=0.1 \mathrm{GHz}$ to 1.0 GHz	27	30		dB
		$\mathrm{f}_{0}=1.0 \mathrm{GHz}$ to 2.0 GHz	21	24		
		$\mathrm{f}_{0}=2.0 \mathrm{GHz}$ to 2.7 GHz	19	22		
		$\mathrm{f}_{0}=2.7 \mathrm{GHz}$ to 3.8 GHz	15	18		
0.1 dB Compression Point (RFCOM to All RF Ports)	$P_{0.1 d B}$	$\mathrm{f}_{0}=0.1 \mathrm{GHz}$ to 3.8 GHz		25		dBm

MIPI READ AND WRITE TIMING

Figure 3. Register Write Command Timing Diagram

- Signal Driven by Master
.-........ Signal Not Driven; Pull-Down Only
_- Signal Driven by Slave
...... For Reference Only

SCL
SDA SDA

Figure 4. Register Read Command Timing Diagram

COMMAND SEQUENCE BIT DEFINITIONS

Type	SSC	C11-C8	C7	C6-C5	C4	C3-C0	$\begin{gathered} \text { Parit } \\ y \\ \text { Bits } \end{gathered}$	BPC	Extended Operation					
									$\begin{aligned} & \text { DA7(1)- } \\ & \text { DAO(1) } \\ & \hline \end{aligned}$	Parity Bits	BPC	$\begin{aligned} & \text { DA7(n)- } \\ & \text { DAO(n) } \end{aligned}$	$\begin{aligned} & \text { Parity } \\ & \text { Bits } \end{aligned}$	BPC
Reg0 Write	Y	SA[3:0]	1	Data[6:5]	Data[4]	Data[3:0]	Y	Y	-	-	-	-	-	-
Reg Write	Y	SA[3:0]	0	10	Addr[4]	Addr[3:0]	Y	-	Data[7:0]	Y	Y	-	-	-
Reg Read	Y	SA[3:0]	0	11	Addr[4]	Addr[3:0]	Y	Y	Data[7:0]	Y	Y	-	-	-

Legends:

SSC = Sequence start command
SA = Slave address
D = Register Address
A = Data bits
$C=$ Command frame bits
$B P C=$ Bus park cycle

REGISTER MAPS

Register_0

Register Address: 0x0000; RN
Table 3. Register_0 Register Details

Bit(s)	Bit Name	Description	Default	R/W
$D[7: 0]$	MODE_CTRL	See Table 1 section.	0000	R/W

Register_1

Register Address: 0x0001; RM
Table 4. Register_1 Register Details

Bit(s)	Bit Name	Description	Default	R/W
$D[7: 0]$	MODE_CTRL	See Table 2 section.	0000	R/W

PM TRIG

Register Address: 0x001C; RN and W
Table 7. PM_TRIG Register Details

Bit(s)	Bit Name	Description	Default	Type
D[7]	PWR_MODE_1	0 : Normal 1: Low power	0	R/W
D[6]	PWR_MODE_0	0: Active - Normal 1: Startup - All registers are reset to the default	0	R/W
D[5]	TRIGGER_MASK_2	0 : TRIGGER_2 enabled 1:TRIGGER_2 disabled If any one of the three TRIGGER_MASK_x is set to logic ' 1 ', the corresponding trigger is disabled, in that case data written to a register associated with the trigger goes	0	R/W
D[4]	TRIGGER_MASK_1	0: TRIGGER_1 enabled directly to the destination register. 1:TRIGGER_1 disabled Otherwise, if the TRIGGER_MASK_x is set to logic '0',	0	R/W
D[3]	TRIGGER_MASK_0	0 : TRIGGER_0 enabled destination register is unchanged until its corresponding 1: TRIGGER_0 disabled trigger is asserted.	0	R/W
$D[2]$	TRIGGER_2	0: Keep its associated destination registers unchanged. 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_2 is set to logic ' 0 '.	0	W
D 1]	TRIGGER_1	0 : Keep its associated destination registers unchanged. 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_1 is set to logic ' 0 '.	0	W
D[0]	TRIGGER_0	0 : Keep its associated destination registers unchanged. 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_0 is set to logic ' 0 '.	0	W

FEBRUARY 2022

REGISTER MAPS (continued)

PM_TRIG

Register Address: 0x001C; RMW and W
Table 7. PM_TRIG Register Details

Bit(s)	Bit Name	Description	Default	Type
D[7]	PWR_MODE_1	0: Normal 1: Low power	0	R/W
D[6]	PWR_MODE_0	0 : Active - Normal 1: Startup - All registers are reset to the default	0	R/W
D[5]	TRIGGER_MASK_2	0: TRIGGER_2 enabled 1:TRIGGER_2 disabled If any one of the three TRIGGER_MASK_x is set to logic ' 1 ', the corresponding trigger is disabled, in that case data written to a register associated with the trigger goes	0	R/W
D[4]	TRIGGER_MASK_1	0: TRIGGER_1 enabled directly to the destination register. 1:TRIGGER_1 disabled Otherwise, if the TRIGGER_MASK_x is set to logic ' 0 ',	0	R/W
$\mathrm{D}[3]$	TRIGGER_MASK_0	0 : TRIGGER 0 enabled 1:TRIGGER_0 disabled destination register is unchanged until its corresponding trigger is asserted.	0	R/W
$\mathrm{D}[2]$	TRIGGER_2	0: Keep its associated destination registers unchanged. 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_2 is set to logic ' 0 '.	0	W
$\mathrm{D}[1]$	TRIGGER_1	0 : Keep its associated destination registers unchanged. 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_1 is set to logic ' 0 '.	0	W
D[0]	TRIGGER_0	0 : Keep its associated destination registers unchanged. 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_0 is set to logic ' 0 '.	0	W

PRODUCT_ID

Register Address: 0x001D; R
Table 8. PRODUCT_ID Register Details

Bit(s)	Bit Name	Description	Default	Type
$D[7: 0]$	PRODUCT_ID	Product ID.	0000	R

MANUFACTURER_ID

Register Address: 0x001E; R
Table 9. MANUFCTURER_ID Register Details

Bit(s)	Bit Name	Description	Default	Type		
$D[7: 0]$	MANUFACTURER_ID $[7: 0]$	Lower eight bits of MIPI registered Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.	0100			
1010					$\quad R$	R
:---						

MAN_USID

Register Address: 0x001F; R and RNW
Table 10. MAN_USID Register Details

Bit(s)	Bit Name	Description	Default	Type
$D[7: 6]$	Reserved	Reserved	00	R
$D[5: 4]$	MANUFACTURER_ID $[9: 8]$	Upper two bits of Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.	00	R
$D[3: 0]$	USID	USID of the device	1011	R / W

FEBRUARY 2022

TYPICAL APPLICATION CIRCUIT

Figure 5. SGM72112B Typical Application Circuit

EVALUATION BOARD LAYOUT

Figure 6. SGM72112B Evaluation Board Layout

PACKAGE OUTLINE DIMENSIONS

ULGA-2.4×2-18L

TOP VIEW

BOTTOM VIEW

SIDE VIEW
RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		
	MIN	MOD	MAX
A	0.500	0.550	0.600
A1	0.140	0.170	0.200
A2	2.300	0.380 BSC	
D	1.900	2.400	2.500
E			
D1	0.500		
E1	0.100 BSC		
e	0.200		
L	0.100		
L1	0.650		
L2			
L3			

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.
KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width $\mathbf{W 1}$ $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	P2 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
ULGA-2.4×2-18L	$77^{\prime \prime}$	9.5	2.25	2.65	0.75	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
$7{ }^{\prime \prime}$ (Option)	368	227	224	8
$7^{\prime \prime}$	442	410	224	18

Weedspread

For the latest specifications or product information:
Website: www.ps-micro.com.cn
Phone: 86-21-50772230
Email: info@ps-micro.com.cn

THE INFORMATION CONTAINED HEREIN IS BELIEVED TO BE RELIABLE. PSMICRO MAKES NO WARRANTIES REGARDING INFORMATION CONTAINED HEREIN. PSMICRO ASSUMES NO RESPONSIBILITIES OR LIABILITIES FOR THE USE OF THE INFORMATION CONTAINED HEREIN. THE INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS, WHERE IS", AND THE ENTIRE RISK ASSOCIATED WITH SUCH INFORMATION IS ENTIRELY WITH THE USER. ALL INFORMATION CONTAINED HEREIN IS SUBJECT TO CHANGE WITHOUT NOTICE. THE INFORMATION CONTAINED HEREIN OR ANY USE OF SUCH INFORMATION DOES NOT GRANT, EXPLICITLY OR IMPLICITLY TO ANY PARTY ANY PATENT RIGHTS, LICENSES, OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS, WHETHER WITH REGARD TO SUCH INFORMATION ITSELF OR ANYTHING DESCRIBED BY SUCH INFORMATION.

PSMICRO products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © PS Micro Corp | All rights reserved | Weedspread is a registered trademark of PS Micro Corp

