Low－Voltage Rail－to－Rail Output Operational Amplifie

（compatible to LMV321）

Features

－2．7－V and 5－V performance
－$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation
－No crossover distortion
－Low supply current
－LMV321B： $330 \mu \mathrm{~A}$（typical）
－Rail－to－rail output swing
－ESD protection exceeds JESD 22
－2000－V human－body model
－1000－V charged－device model

Applications

－Desktop PCs
－HVAC：heating，ventilating，and air conditioning
－Motor control：AC induction
－Netbooks
－Portable media players
－Power：telecom DC／DC module：digital
－Professional audio mixers
－Refrigerators
－Washing machines：high－end and low－end

Pin Configuration and Functions

SOT23－5

Name	I／O	Analog／Digital	Description
INP	I	A	Non－Inverting Input of Amplifier．Voltage range of this pin can go from O to VDD．
GND	GROUND	GROUND	Ground pin．Connect to the most negative supply，ALL GND pads are connected on die．
INN	I	A	Inverting Input of Amplifier．This pin has same voltage range as INP．
OUT	O	A	Amplifier Output．The voltage range extends to within millivolts of each supply rail．
VDD	POWER	POWER	Power supply（5V），connect to positive voltage supply

Absolute Maximum Ratings
over operating free－air temperature range（unless otherwise noted）${ }^{(1)}$

			MIN	MAX	UNIT
V	Supply voltage ${ }^{\text {［2］}}$			5.5	V
V_{10}	Differential input voltage ${ }^{\text {（J）}}$		－5．5	5.5	V
V I	Input voltage（either input）		－0．2	5.7	V
	Duration of output short circuit（one amplifier）to ground ${ }^{(4)}$	At or below $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ， $\mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$		mited	
TJ	Operating virtual junction temperature			150	${ }^{\circ} \mathrm{C}$
stg	Storage temperature		－65	150	${ }^{\circ} \mathrm{C}$

（1）Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
（2）All voltage values（except differential voltages and $V_{C C}$ specified for the measurement of IOS）are with respect to the network GND．
（3）Differential voltages are at $\mathrm{IN}+$ with respect to $\mathrm{IN}-$ ．
（4）Short circuits from outputs to $V_{C C}$ can cause excessive heating and eventual destruction．

ESD Ratings

		VALUE	UNIT
$\mathbf{v}_{(\mathrm{ESD})} \begin{gathered} \text { Electrostatic } \\ \text { discharge } \end{gathered}$	Human－body model（HBM），per ANSI／ESDA／JEDEC JS－001，all pins ${ }^{\text {（1）}}$	± 2000	
	Charged－device model（CDM），per JEDEC specification JESD22－C101，all pins ${ }^{(\angle)}$	± 1000	V

（1）JEDEC document JEP155 states that 500－V HBM allows safe manufacturing with a standard ESD control process．
（2）JEDEC document JEP157 states that 250－V CDM allows safe manufacturing with a standard ESD control process．

Electrical Characteristics： $\mathrm{V}_{\mathrm{CC}}+\mathbf{= 2 . 7} \mathrm{V}$
$\mathrm{V}_{\mathrm{CC}+}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（unless otherwise noted）

（1）Typical values represent the likely parametric nominal values determined at the time of characterization．Typical values depend on the application and configuration and may vary over time．Typical values are not ensured on production material．

Electrical Characteristics： $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CC}+}=5 \mathrm{~V}$ ，at specified free－air temperature（unless otherwise noted）

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{(1)}$	MAX	UNIT
V_{10}	Input offset voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.7	3	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			7	
α_{VIO}	Average temperature coefficient of input offset voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
${ }^{18}$	Input bias current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	$250{ }^{(2)}$	nA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			500 （2）	
${ }_{10}$	Input offset current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	50（2）	nA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			150（2）	
CMRR	Common－mode rejection ratio	$\begin{aligned} & V_{C M}=0 \text { to } 4 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	65		dB
$\mathrm{k}_{\mathrm{sVR}}$	Supply－voltage rejection ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	60		dB
$\mathrm{V}_{\mathrm{ICR}}$	Common－mode input voltage range	CMRR $\geq 50 \mathrm{~dB}, \mathrm{~T} A=25^{\circ} \mathrm{C}$	0	－0．2		V
				4.2	4	
Vo	Output swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V ，high level， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}-300$	$\mathrm{V}_{\mathrm{CC}}-40$		mV
		$\begin{aligned} & \mathrm{R} \mathrm{~L}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \text {, high level, } \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}-400{ }^{(2)}$			
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，low level		120	300	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ，low level			$400^{(2)}$	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 2.5 V ，high level， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}-100$	$\mathrm{V}_{\mathrm{CC}}-10$		
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \text {, high level, } \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V^{\prime}-200^{(2)} \\ & C C \end{aligned}$			
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，low level		65	180	
		$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ，low level			$280^{(2)}$	
$A_{v D}$	Large－signal differential voltage gain	$\mathrm{RL}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15	100		V／mV
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10^{(2)}$			
1	Output short－circuit current	Sourcing， $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$5{ }^{(2)}$	40		mA
		Sinking， $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$10^{(2)}$	40		
B1	Unity－gain bandwidth	$\mathrm{C}_{L}=200 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5		MHz
Φ_{m}	Phase margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60		－
Gm_{m}	Gain margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10		dB
V_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		39		nV／vFz
In	Equivalent input noise current	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T} \mathrm{A}=25^{\circ} \mathrm{C}$		0.21		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
SR	Slew rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1		V／$/ \mathrm{s}$

Typical Characteristics

Functional Block Diagram

Typical Application

Some applications require differential signals．shows a simple circuit to convert a single－ended input of 0.5 to 2 V into differential output of $\pm 1.5 \mathrm{~V}$ on a single $2.7-\mathrm{V}$ supply．The output range is intentionally limited to maximize linearity．The circuit is composed of two amplifiers．One amplifier acts as a buffer and creates a voltage，VOUT＋． The second amplifier inverts the input and adds a reference voltage to generate V OUT－．Both
$\mathrm{V}_{\text {OUT }}$ a and $\mathrm{V}_{\text {OUT－}}$ range from 0.5 to 2 V ．The difference， $\mathrm{V}_{\text {DIFF，}}$ is the difference between $\mathrm{V}_{\text {OUT＋}}$ and $\mathrm{V}_{\text {OUT－}}$ ． The LMV358 was used to build this circuit．

Schematic for Single－Ended Input to Differential Output Conversion

LMV321B

