

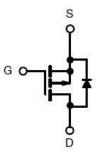
-30V P-Channel MOSFET

General Features

- Advanced groove technology is adopted
- Provide excellent RDS(ON)
- Low gate charge and operate at low gate voltage

Application

- Lithium battery protection
- Wireless impact
- Mobile phone fast charging



Product Summary

BVDSS	-30	V
RDS(on).Typ.@VGS=-10V	5.0	mΩ
ID	-100	Α

TO-252-2L top view

Schematic diagram

Absolute Maximum Ratings (TC=25℃unless otherwise noted)

Symbol	Parameter	Max.	Units
VDSS	Drain-Source Voltage	-30	V
VGSS	Gate-Source Voltage	±20	V
ID	Continuous Drain Current $T_C = 25^{\circ}C$	-100	А
ID	Continuous Drain Current T _C = 100 °C	-59	А
IDM	Pulsed Drain Current note1	-400	А
EAS	Single Pulsed Avalanche Energy note2	210	mJ
PD	Power Dissipation $T_C = 25^{\circ}C$	109	W
TJ, TSTG	Operating and Storage Temperature Range	-55 to +175	$^{\circ}$ C

Thermal Characteristics

Parameter	Symbol	Limit	Units
Thermal Resistance, Junction-to-Case	Reuc	3.0	°C/W
Thermal Resistance, Junction-to-Ambient	Rеја	50	°C/W

-30V P-Channel MOSFET

Electrical Characteristics (T_J=25°C, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	VGS=0V, ID= -250μA	-30	-	-	V
IDSS	Zero Gate Voltage Drain Current	VDS= -30V, VGS=0V,	-	-	-1	μΑ
IGSS	Gate to Body Leakage Current	VDS=0V, VGS= ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID= -250μA	-1.0	-1.5	-2.5	V
	Static Drain-Source on-Resistance	VGS= -10V, ID= -30A	-	5.0	6.0	_
RDS(on)		VGS= -4.5V, ID= -20A	-	7.0	9.0	mΩ
Ciss	Input Capacitance	VDS= -15V, VGS=0V,	-	6560	-	pF
Coss	Output Capacitance	f=1.0MHz	-	742	-	pF
Crss	Reverse Transfer Capacitance		-	700	•	pF
Qg	Total Gate Charge	VDS= -15V, ID= -30A,	-	30	-	nC
Qgs	Gate-Source Charge	VGS= -10V	-	6	-	nC
Qgd	Gate-Drain("Miller") Charge		-	8	-	nC
td(on)	Turn-on Delay Time		-	11	-	ns
tr	Turn-on Rise Time	VDD= -15V, ID= -30A,	-	13	-	ns
td(off)	Turn-off Delay Time	VGS= -10V, RGEN=2.5Ω	-	52	-	ns
tf	Turn-off Fall Time		-	21	-	ns
IS	Maximum Continuous Drain to Source DiodeForward Current			ı	-100	А
ISM	Maximum Pulsed Drain to Source Diode Forward Current		-	-	-400	Α
VSD	Drain to Source Diode Forward Voltage	VGS=0V, IS= -30 A		-0.8	-1.2	V

Notes:

- 1、Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature
- $2_{\rm N}$ E AS condition: T J =25 °C, V DD = -15V, V G = -10V, R G =25 Ω , L=0.5mH, I AS = -29A
- 3、Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Typical Characteristics

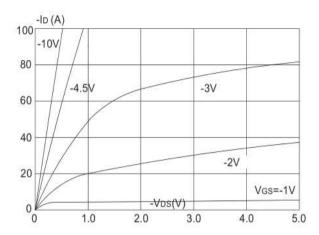


Figure1: Output Characteristics

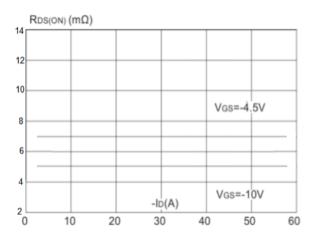
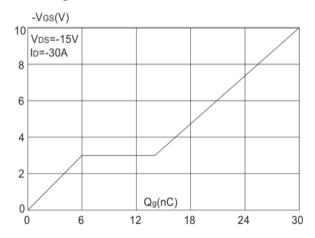
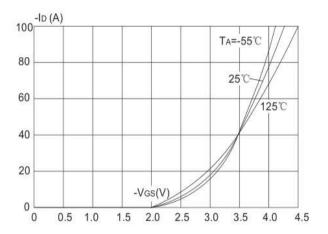




Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

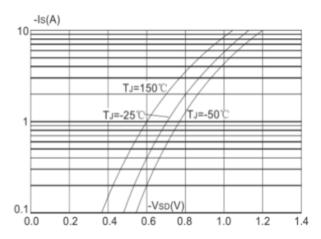
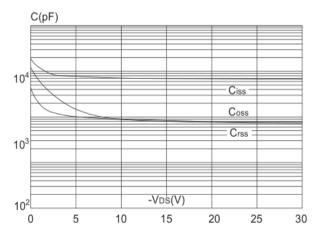



Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

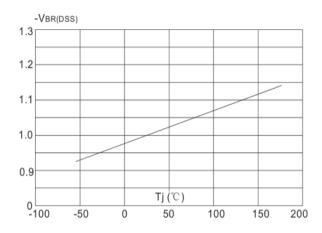


Figure 7: Normalized Breakdown Voltage vs.

Junction Temperature

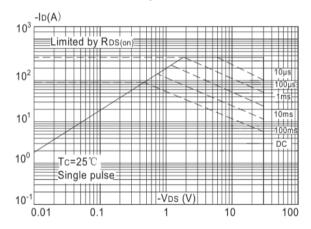


Figure 9: Maximum Safe Operating Area

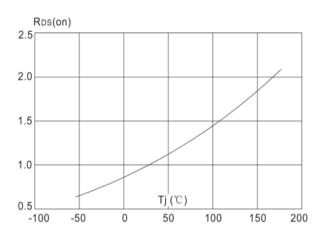


Figure 8: Normalized on Resistance vs.

Junction Temperature

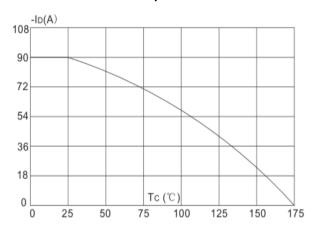


Figure 10: Maximum Continuous Drain Current vs. Case Temperature

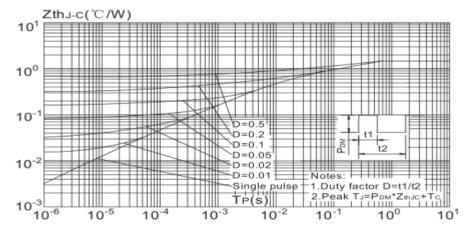
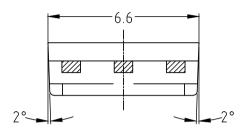
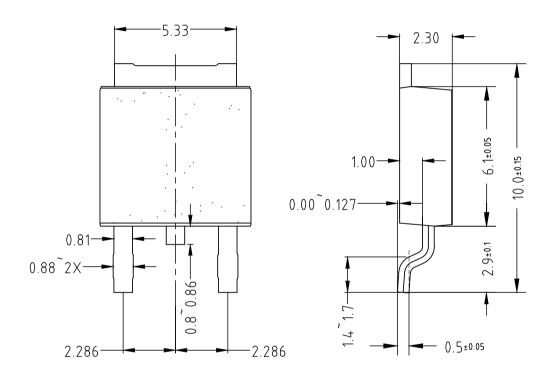


Figure.11: Maximum Effective

Transient Thermal Impedance, Junction-to-Case


Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
ASDM30P100KQ-R	30P100	TO-252	Tape&Reel	2500/Reel

PACKAGE	MARKING
TO-252	30P100 Date Code

-30V P-Channel MOSFET

TO-252

ASDM30P100KQ

-30V P-Channel MOSFET

IMPORTANT NOTICE

Xi'an Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Xi'an Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Xi'an Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Xi'an Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on Xi'an Ascend Semiconductor Incorporated website, harmless against all damages.

Xi'an Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Xi'an Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Xi'an Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized explication.

all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com

DEC 2018 Version1.0 7/7 Ascend Semicondutor Co.,Ltd