



**Spec No.: DS70-2013-0018** Effective Date: 05/04/2013

Revision: -

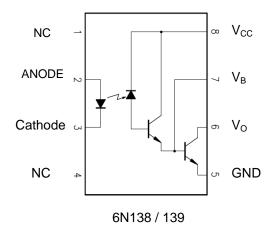
**LITE-ON DCC** 

**RELEASE** 

BNS-OD-FC001/A4

**Property of Lite-on Only** 

### LTV-0701


### Single Channel, High Speed Optocouplers



#### **Description**

These high gain series couplers use a light emitter diode and an integrated high gain photo detector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltage and high speed operation. Where desired the Vcc and Vo terminals may be tied together to achieve conventional photo darlington operation. A base access terminal allows a gain bandwidth adjustment to be made.





Truth Table (Positive Logic)

| LED | OUT |
|-----|-----|
| ON  | L   |
| OFF | Н   |

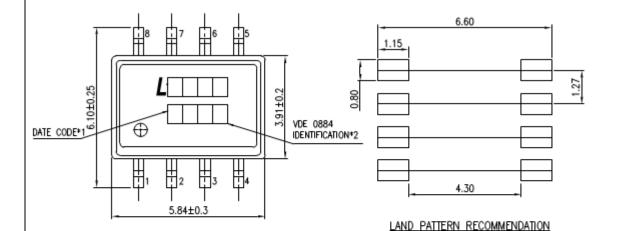
A 0.1µF bypass Capacitor must be connected between Pin8 and Pin5

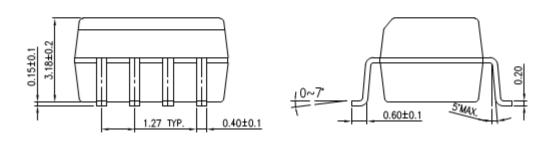


#### **Features**

- SO8 package
- High current transfer ratio 2000% typical.
- Low input current requirements 0.5mA
- High output current 60mA
- CTR guarantee 0~70°C.
- Instantaneous common mode rejection 10KV/  $\mu$  sec
- TTL compatible output 0.1V V<sub>OL</sub> typical

#### **APPLICATIONS**


- Digital logic ground isolation
- Low input current line receiver
- Telephone ring detector
- EIA-RS-232C line receiver
- Current loop receiver
- High common mode noise line receiver


Part No.: LTV-0701(Preliminary Version) Page: 1 of 10

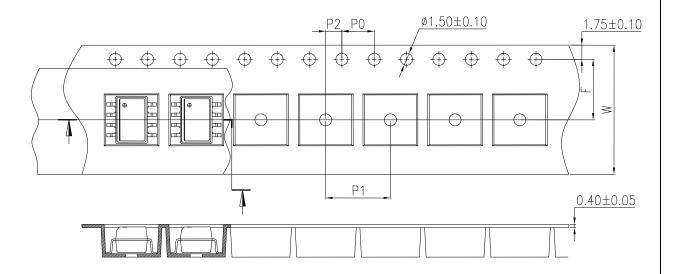
**Property of Lite-on Only** 

### **Package Dimensions**

SO8 Package (LTV-0701)






- \*1. Date code
- \*2. "V" to represent VDE0884

Dimensions are all in Millimeters.

Part No.: LTV-0701(Preliminary Version) Page: 2 of 10

**Property of Lite-on Only** 

### **Taping Dimensions**

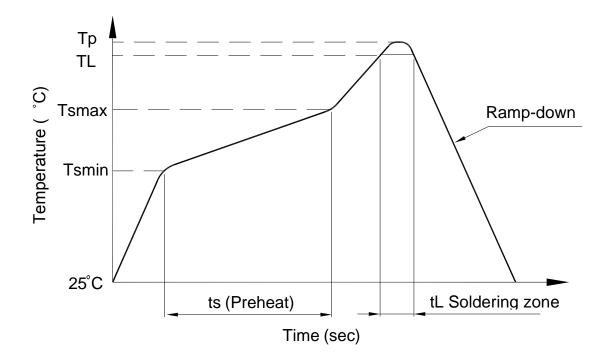


| Description                            | Symbol  | Dimensions in millimeters (inches) |
|----------------------------------------|---------|------------------------------------|
| Tape wide                              | W       | 16.0±0.30(0.63)                    |
| Pitch of sprocket holes                | P0      | 4.0±0.10(0.15)                     |
| Distance of compartment                | F<br>P2 | 7.5±0.10(0.295)<br>2±0.10(0.079)   |
| Distance of compartment to compartment | P1      | 8.0±0.10(0.47)                     |

#### **Quantities Per Reel**

| Package Type     | LTV-0701 |
|------------------|----------|
| Quantities (pcs) | 2000     |

Part No.: LTV-0701(Preliminary Version) Page: 3 of 10


BNS-OD-C131/A4

**Property of Lite-on Only** 

#### **Recommended Lead Free Reflow Profile**

One time soldering reflow is recommended within the conditions below:

| Profile item                                                                         | Conditions                |
|--------------------------------------------------------------------------------------|---------------------------|
| Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (Min to Max) (Ts) | 150°C<br>180°C<br>90±30°C |
| Soldering zone<br>- Temperature (TL)<br>- Time (tL)                                  | 250°C<br>10~15 sec        |
| Peak temperature (TP)                                                                | 260°C                     |
| Ramp-down rate                                                                       | 3°~ 6°C / sec             |



Part No.: LTV-0701(Preliminary Version) Page: 4 of 10

### **Property of Lite-on Only**

#### **Absolute Maximum Ratings\*1**

| Parameter                          | Symbol              | Device   | Min  | TYP | Max | Units     |
|------------------------------------|---------------------|----------|------|-----|-----|-----------|
| Storage Temperature                | T <sub>ST</sub>     |          | -55  |     | 125 | °C        |
| Operating Temperature              | T <sub>A</sub>      |          | -40  |     | 85  | °C        |
| Isolation Voltage                  | V <sub>ISO</sub>    | LTV-0701 | 3750 |     |     | $V_{RMS}$ |
| Supply Voltage                     | V <sub>CC</sub>     |          | -0.5 |     | 7   | V         |
| Lead Solder Temperature * 2        | T <sub>SOL</sub>    |          |      |     | 260 | °C        |
| Input                              |                     |          |      |     |     |           |
| Average Forward Input Current      | I <sub>F</sub>      |          |      |     | 20  | mA        |
| Reverse Input Voltage              | $V_R$               | LTV-0701 |      |     | 5   | V         |
| Input Power Dissipation            | Pı                  |          |      |     | 35  | mW        |
| Output                             |                     |          |      |     |     |           |
| Average Output Current             | Io                  |          |      |     | 60  | mA        |
| Supply Voltage, Output Voltage     | Vcc, V <sub>O</sub> | LTV-0701 | -0.5 |     | 18  | V         |
| Output Collector Power Dissipation | P <sub>O</sub>      |          |      |     | 100 | mW        |

<sup>1.</sup>Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

2. 260°C for 10 seconds. Refer to Lead Free Reflow Profile.

Part No.: LTV-0701(Preliminary Version) Page: 5 of 10

### **Property of Lite-on Only**

### **Electrical Specifications**

| Parameters                                       | Test Condition                                                               | Symbol               | Device          | Min             | Тур      | Max  | Units |     |     |   |
|--------------------------------------------------|------------------------------------------------------------------------------|----------------------|-----------------|-----------------|----------|------|-------|-----|-----|---|
| Input                                            |                                                                              |                      |                 |                 |          |      |       |     |     |   |
| Input Forward Voltage                            | I <sub>F</sub> =1.6mA, T <sub>A</sub> =25°C                                  | V <sub>F</sub>       |                 | 1.25            | 1.40     | 1.75 | V     |     |     |   |
| Input Forward Voltage<br>Temperature Coefficient | IF=1.6mA                                                                     | ΔV <sub>F</sub> /ΔTa | LTV-0701        |                 | -1.8     |      | mV/℃  |     |     |   |
| Input Reverse Voltage                            | $I_R = 10 \mu A T_A = 25 ^{\circ} C$                                         | BV <sub>R</sub>      | L1V-0701        | 5               | -        | -    | V     |     |     |   |
| Input Capacitance                                | V <sub>F</sub> =0; f=1MH <sub>Z</sub>                                        | C <sub>IN</sub>      |                 | -               | 60       | -    | pF    |     |     |   |
| Detector                                         |                                                                              | •                    |                 | •               |          | •    |       |     |     |   |
| Correct transfer ratio                           | I <sub>F</sub> =0.5mA;Vo=0.4V;<br>Vcc=4.5V                                   | CTD                  |                 | 400             | 2000     | 5000 | - %   |     |     |   |
| Current transfer ratio                           | I <sub>F</sub> =1.6mA;Vcc=0.4V;<br>Vcc=4.5V                                  | - CTR                |                 | 500             | 1600     | 2600 |       |     |     |   |
|                                                  | I <sub>F</sub> =0.5mA;Vcc=4.5V;<br>I <sub>o</sub> =2mA                       | V <sub>OL</sub>      | V <sub>OL</sub> |                 |          |      |       |     |     |   |
| Logic low output voltage                         | I <sub>F</sub> =1.6mA;Vcc=4.5V;<br>I <sub>o</sub> =8mA                       |                      |                 | V <sub>OL</sub> | V        |      |       | 0.1 | 0.4 | V |
| Logic low output voltage                         | I <sub>F</sub> =5mA;Vcc=4.5V;<br>I <sub>o</sub> =15mA                        |                      |                 |                 | LTV-0701 |      |       | 0.4 |     |   |
|                                                  | I <sub>F</sub> =12mA;Vcc=4.5V;<br>I <sub>o</sub> =24mA                       |                      |                 |                 | 0.2      |      |       |     |     |   |
| Logic high output current                        | I <sub>F</sub> =0mA, Vo=Vcc=18V<br>T <sub>A</sub> =25°C                      | Іон                  |                 |                 | 0.05     | 100  | μ Α   |     |     |   |
| Logic low supply current                         | I <sub>F</sub> =1.6mA, V <sub>o</sub> =open (Vcc=18V)                        | I <sub>ccL</sub>     |                 | -               | 0.4      | 1.5  | mA    |     |     |   |
| Logic high supply current                        | I <sub>F</sub> =0mA, V <sub>o</sub> =open;<br>T <sub>A</sub> =25°C (Vcc=18V) | I <sub>ccH</sub>     |                 | -               | 0.01     | 10   | mA    |     |     |   |

<sup>\*</sup>All Typical at T<sub>A</sub> =25°C

Part No.: LTV-0701(Preliminary Version) Page: 6 of 10

### **Property of Lite-on Only**

### **SWITCHING SPECIFICATIONS (AC)**

| Parameter                 | Test Condition                                               | Symbol                                                                           | Device          | Min      | Тур | Max | Units   |       |
|---------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|----------|-----|-----|---------|-------|
| Propagation Delay Time to | $I_{F}=0.5$ mA; $R_{L}=4.7$ K $\Omega$                       |                                                                                  |                 | 5        | 25  | μs  |         |       |
| Low Output Level          | $I_F=12mA; R_L=270\Omega$                                    | t <sub>PHL</sub>                                                                 |                 |          | 0.2 | 1   | μ3      |       |
| Propagation Delay Time to | $I_F$ =0.5mA; $R_L$ =4.7K $\Omega$                           | - t <sub>PLH</sub>                                                               |                 |          | 18  | 60  | $\mu$ s |       |
| High Output Level         | $I_F=12mA; R_L=270\Omega$                                    |                                                                                  | LTV-0701        | -        | 2   | 7   | μ3      |       |
| Logic High Common Mode    | I <sub>F</sub> =0mA;  V <sub>CM</sub>  =10V <sub>p-p</sub>   | Common Mode   I <sub>F</sub> =0mA;  V <sub>CM</sub>  =10V <sub>p-p</sub>   ICM_I | ICM I           | 210 0701 | 1   | 10  | _       | KV/µs |
| Transient Immunity        | $R_L=2.2K\Omega$                                             | СМН                                                                              |                 | '        | 10  |     | KV/µs   |       |
| Logic Low Common Mode     | I <sub>F</sub> =1.6mA;  V <sub>CM</sub>  =10V <sub>D-D</sub> | I <sub>F</sub> =1.6mA;  V <sub>CM</sub>  =10V <sub>p-p</sub>                     | CM <sub>L</sub> |          | 1   | 10  |         | KV/µs |
| Transient Immunity        | $R_L=2.2K\Omega$                                             |                                                                                  |                 |          | 1   | 10  | -       | KV/μs |

<sup>\*</sup>All Typical at T<sub>A</sub> =25°C

Part No.: LTV-0701(Preliminary Version) Page: 7 of 10

### **Property of Lite-on Only**

#### **Isolation Characteristics**

| Parameter                                  | Test Condition                                                      | Symbol           | Min  | Тур              | Max | Units     |
|--------------------------------------------|---------------------------------------------------------------------|------------------|------|------------------|-----|-----------|
| Input-Output Insulation<br>Leakage Current | 45% RH, t = 5s,<br>V <sub>I-O</sub> = 3kV DC, T <sub>A</sub> = 25°C | I <sub>I-O</sub> |      |                  | 1.0 | μΑ        |
| Withstand Insulation<br>Test Voltage       | RH ≤ 50%, t = 1min,<br>T <sub>A</sub> = 25°C                        | V <sub>ISO</sub> | 3750 |                  |     | $V_{RMS}$ |
| Input-Output Resistance                    | V <sub>I-O</sub> = 500V DC                                          | R <sub>I-O</sub> |      | 10 <sup>12</sup> |     | Ω         |

<sup>\*</sup>All Typical at T<sub>A</sub> =25°C

#### Notes,

- 1. AC For 1 Minute, R.H. =  $40 \sim 60\%$ . Isolation voltage shall be measured using the following method.
- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 Seconds
- 3. Current Transfer Ratio (CTR) is defined as the ration of output collector current, Io, to the forward LED input current, IF, times 100%.
- 4. Pin 7 open.
- 5. Instantaneous common mode rejection voltage "output (1)" represents a common mode voltage variation that can hold the output above (1) level (Vo>2.0V). Instantaneous common mode rejection voltage "output (0)" represents a common mode voltage variation that can hold the output above (0) level (Vo<0.8V).
- 6. Device considered a two terminal device. Pins 1, 2, 3 and 4 shorted together and Pins 5, 6, 7 and 8 shorted together.

Part No.: LTV-0701(Preliminary Version) Page: 8 of 10

# **Property of Lite-on Only Switching Time Test Circuit** Noise Shield Pulse tr = 5ns Z<sub>O</sub>= 50 ∨ 10% D.C. I/ f< 100ns 3 0.1 μF I<sub>F</sub> Monitor 5 GND TPHL Figure 1: Single Channel Test Circuit for t<sub>PHL</sub> and t<sub>PLH</sub> Noise Shield 1 $\lesssim$ R $_{ t L}$ 3 0.1 μF GND Pulse Gen

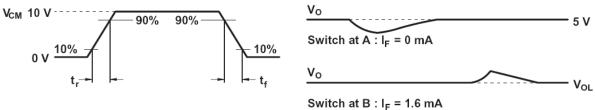



Figure 2: Single Channel Test Circuit for Common Mode Transient Immunity

Part No.: LTV-0701(Preliminary Version) Page: 9 of 10

### **Property of Lite-on Only**

| Notes:                                                                                                                                                                                                                                                                                                                           |                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Specifications of the products displayed herein are subject to change without                                                                                                                                                                                                                                                    | t notice.                                              |
| The products shown in this publication are designed for the general use in electroffice automation equipment, communications devices, audio/visus instrumentation and application. For equipment/devices where high reliability as space applications, nuclear power control equipment, medical equipment sales representatives. | al equipment, electrical y or safety is required, such |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                  |                                                        |
| No.: LTV-0701(Preliminary Version)                                                                                                                                                                                                                                                                                               | Page: 10 of                                            |

BNS-OD-C131/A4