

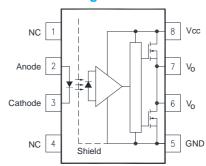
LTV-T350 series

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low I_{CC}, High

DESCRIPTION

The LTV-T350 optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AlGaAs LED optically coupled to an integrated circuit with a power output stage. The 2.5A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/100 A. For IGBTs with higher ratings, the LTV-T350 series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from -40°C ~ +105°C.


1.1 Features

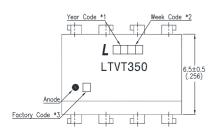
- 2.5 A maximum peak output current
- 500 ns maximum propagation delay
- 300 ns maximum propagation delay difference
- 25 kV/us minimum Common Mode Rejection (CMR) at V_{CM} = 1500 V
- I_{CC} = 3.0 mA maximum supply current
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature -40°C ~ +105°C.
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 5000 V_{RMS}/1 min
- IEC/EN/DIN EN 60747-5-5 V_{IORM} = 630 Vpeak

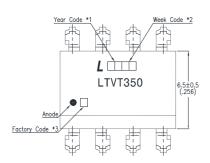
1.2 Applications

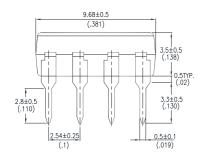
- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- AC/Brushless DC motor drives

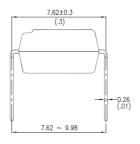
Functional Diagram

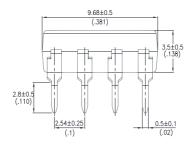
A 0.1µF bypass Capacitor must be connected between Pin 5 and 8.

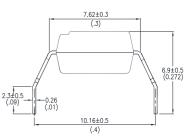

LED	V _{cc} -GND (Turn-ON, +ve going)	V _{cc} -GND (Turn-OFF, -ve going)	Vo
OFF	0 - 30 V	0 - 30 V	Low
ON	0 – 11.0 V	0 – 9.5 V	Low
ON	11.0 - 13.5 V	9.5 - 12 V	Transition
ON	13.5 - 30 V	12 - 30 V	High

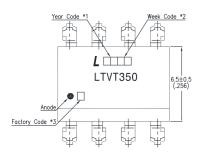


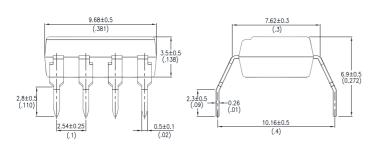

2. PACKAGE DIMENSIONS


2.1 LTV-T350




2.2 LTV-T350M

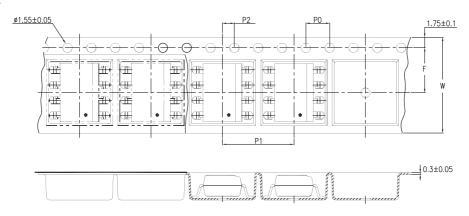




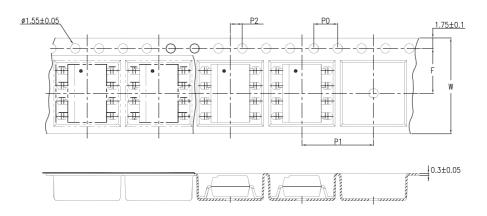
2.3 LTV-T350S

Notes:

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark


(Y: Thailand).

Dimensions are in Millimeters and (Inches).



3. TAPING DIMENSIONS

3.1 LTV-T350S-TA

3.2 LTV-T350S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.47)

3.3 Quantities Per Reel

Package Type	LTV-T350
Quantities (pcs)	1000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	T_{stg}	-55	+125	°C	_
Operating Temperature	T_{opr}	-40	+105	°C	_
Output IC Junction Temperature	TJ	_	125	°C	_
Total Output Supply Voltage	(V _{CC} -V _{EE})	0	35	V	_
Average Forward Input Current	I _F	_	20	mA	_
Reverse Input Voltage	V_R	_	5	V	_
Peak Transient Input Current	I _{F(TRAN)}	_	1.0	Α	1
"High" Peak Output Current	I _{OH(PEAK)}	_	2.5	Α	2
"Low" Peak Output Current	I _{OL(PEAK)}	_	2.5	Α	2
Input Current (Rise/Fall Time)	$t_{r(IN)}/t_{f(IN)}$	_	500	ns	3
Output Voltage	V _{O(PEAK)}	_	35	V	_
Power Dissipation	Pı	_	45	mW	_
Output Power Dissipation	Po	_	250	mW	_
Total Power Dissipation	P_T	_	295	mW	_
Lead Solder Temperature (10s)	T _{sol}	_	260	°C	_

Note: Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Note: Note: A ceramic capacitor $(0.1~\mu\text{F})$ should be connected between pin 8 and pin 5 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: Pulse width (PW) ≤ 1 µs, 300 pps

Note 2: Exponential waveform. Pulse width \leq 0.3 μ s, f \leq 15 kHz

Note 3: The rise and fall times of the input on-current should be less than 500 ns

4.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	105	°C
Supply Voltage	Vcc	15	30	V
Input Current (ON)	I _{FL(ON)}	7	16	mA
Input Voltage (OFF)	$V_{F(OFF)}$	-3.6	0.8	V

4.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
	Input Forward Voltage	V_{F}	1.2	1.37	1.8	V	I _F = 10mA		
	Input Forward Voltage Temperature Coefficient	$\Delta V_{F}/\Delta T$		-1.237		mV/ ^O C	I _F = 10mA		
	Input Reverse Voltage	BV_R	5			V	I _R = 10μΑ		
Input	Input Threshold Current (Low to High)	I _{FLH}		2	5	mA	V _O > 5V, I _O = 0A	21	
	Input Threshold Voltage (High to Low)	V_{FHL}	0.8	1.26		V	V _O < 5V, I _O = 0A		
	Input Capacitance	C _{IN}		33		pF	$f = 1 MHz, V_F = 0 V$		
	High Level Supply Current	Іссн		1.8	3.0	mA	Output Open, I _F = 7 to 16 mA		
	Low Level Supply Current	I _{CCL}		2	3.0	mA	Output Open, $V_F = -3 \text{ to } +0.8 \text{ V}$		
	High level output current	gh level output current I _{OH}	1.0	2.0		^	$V_{O} = (V_{CC} - 3.5 \text{ V})$		1
			2.5			А	V _{CC} - (V _{CC} – 6 V)	19	2
	Low level output current	I _{OL}	1.0	2.0		A	$V_0 = (V_{EE} + 1.5 V)$	20	1
Output	,		2.5				$V_0 = (V_{EE} + 2.5 \text{ V})$		2
	High level output voltage	V _{он}	V _{CC} .	V _{CC} _ 1.1		V	$I_F = 10 \text{mA},$ $I_O = -100 \text{mA}$	17	
	Low level output voltage	V _{OL}		V _{EE +} 0.1	1	V	I _F = 0mA, I _O = 100mA	18	
	UVLO Threshold	V _{UVLO+}	11.0	12.7	13.5	V	$V_0 > 5V$, $I_F = 10 \text{ mA}$		
		V _{UVLO-}	9.5	11.2	12.0	V	$V_{O} < 5V, I_{F} = 10 \text{ mA}$	22	
	UVLO Hysteresis	UVLO _{HYS}		1.5		V			

All Typical values at $T_A = 25$ °C and $V_{CC} - V_{EE} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Maximum pulse width = $50 \mu s$.

Note 2: Maximum pulse width = $10 \mu s$.

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to High Output Level	t _{PLH}	50	220	500				
Propagation Delay Time to Low Output Level	t _{PHL}	50	250	500		$R_g = 10\Omega$,		
Pulse Width Distortion	PWD		30	200		$C_g = 10$ nF, f = 10 kHz,	23	
Propagation delay difference					ns	Duty Cycle = 50%		
between any two parts or	PDD	-200		200		$I_F = 7 \text{ to } 16 \text{ mA},$		3
channels						$V_{CC} = 15 \text{ to } 30V$		
Output Rise Time (10 to 90%)	Tr		30			V _{EE} = ground	23	
Output Fall Time (90 to 10%)	Tf		30				23	
						T _A = 25℃,		
Common mode transient	CMH	25	35		kV/µs	$I_F = 10 \text{ to } 16 \text{ mA},$		1
immunity at high level output	Civil i	25	33		κν/μδ	V _{CM} = 1500 V,		'
						V _{CC} = 30 V	21	
						T _A = 25℃,	21	
Common mode transient	CML	25	35		kV/µs	$V_F = 0 V$,		2
immunity at low level output	IOME	20	- 55		κν/μο	V _{CM} = 1500 V,		
						V _{CC} = 30 V		

All Typical values at $T_A = 25$ °C and $V_{CC} - V_{EE} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

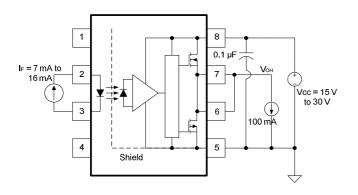
Note 1: CM_H is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($V_O > 15 \text{ V}$).

Note 2: CM_L is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_O < 1$ V).

Note 3: The difference between t_{PHL} and t_{PLH} between any two parts series parts under same test conditions.

6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Note
Withstand Insulation Test	V	5000			V	RH ≤ 40-60%,	1, 2
Voltage	V_{ISO}	5000	_	_	V	$t = 1min, T_A = 25$ °C,	1, 2
Input-Output Resistance	R _{I-O}	_	10 ¹²	_	Ω	V _{I-O} = 500V DC	1
Input-Output Capacitance	C _{I-O}	_	0.90	_	pF	f = 1MHz, T _A = 25℃	1


All Typical values at $T_A = 25\%$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Device is considered a two terminal device: pins 1, 2, 3 and 4 are shorted together and pins 5, 6, 7 and 8 are shorted together.

Note 2: According to UL1577, each Photocoupler is tested by applying an insulation test voltage $6000V_{RMS}$ for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge

7. TYPICAL PERFORMANCE CURVES & TEST CIRCUITS

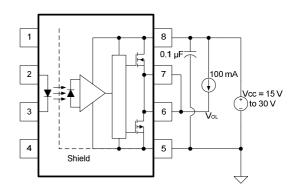


Figure 17: Von Test Circuit

Figure 18: Vol Test Circuit

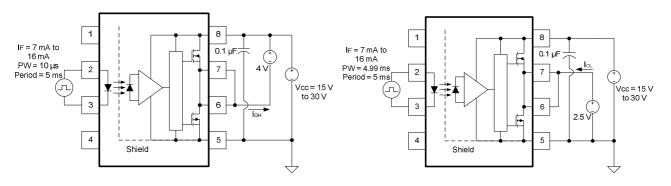


Figure 19: IoH Test Circuit

Figure 20 : IoL Test Circuit

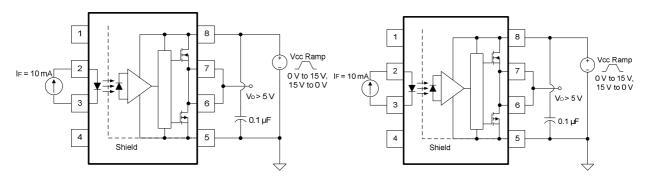


Figure 21: IFLH Test Circuit

Figure 22: UVLO Test Circuit

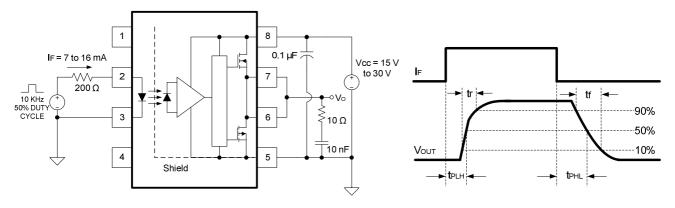


Figure 23: tr, tf, tplh and tphl Test Circuit and Waveforms

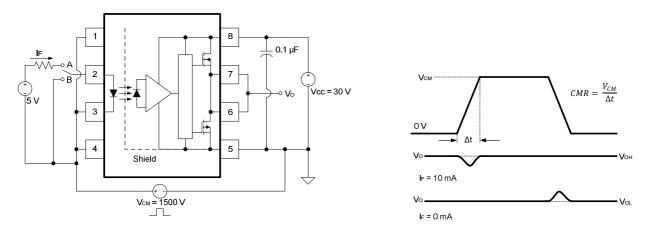
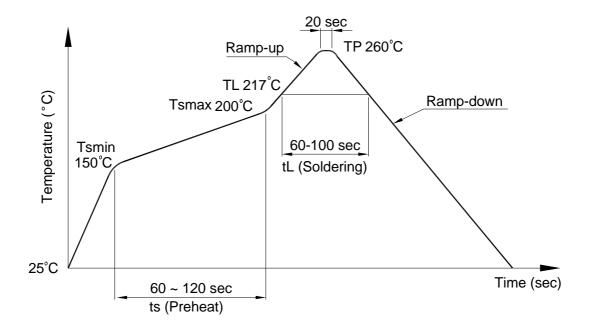


Figure 24: CMR Test Circuit and Waveforms



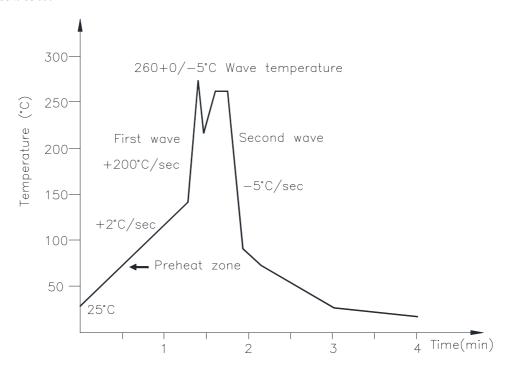
8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T _L)	217°C
- Time (t∟)	60 ~ 100 sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

8.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

9. NAMING RULE

Part Number Options
LTV-T350
LTV-T350M
LTV-T350S-TA
LTV-T350S-TA1
LTVT350-V
LTVT350M-V
LTVT350STA-V
LTVT350STA1-V

Definition of Suffix	Remark
"T350"	LiteOn model name
"No Suffix"	Dual-in-Line package clearance distance 7 mm typical
"M"	Wide lead spacing package clearance distance 8 mm typical
"S"	Surface mounting package clearance distance 8 mm typical
"TA"	Pin 1 location at lower right of the tape
"TA1"	Pin 1 location at upper left of the tape
"V"	VDE approved option

10. Notes:

Specifications of the products displayed herein are subject to change without notice.

The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.