

Standalone Linear Li-Ion Battery

Charger with Thermal Regulation in SOT

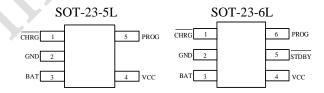
General Description

The AP5054H is a complete constant current & constant voltage linear charger for single cell lithium-ion batteries. Its SOT package and low external component count make the AP5054H ideally suited for portable applications. Furthermore, the AP5054H is specifically designed to work within USB power specifications.

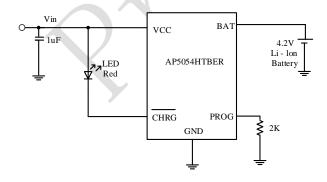
No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be programmed externally with a single resistor. The AP5054H automatically terminates the charge cycle when the charge current drops to $1/10^{th}$ the programmed value after the final float voltage is reached.

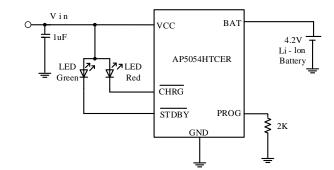
When the input supply (wall adapter or USB supply) is removed, the AP5054H automatically enters a low current state, dropping the battery drain current to less than 0.5 μA . The AP5054H can be put into shutdown mode, reducing the supply current to $180\mu A$.

Other features include charge current monitor, undervoltage lockout, automatic recharge and status indication.


Applications

- Cellular Telephones, PDAs, MP3 /MP4 Players
- Charger
- Digital Camera
- Electronic Dictionary
- Bluetooth ,GPS Applications


Features


- Input Voltage up to 20V
- Input Over Voltage Protection: 6.1V
- Programmable Charge Current Up to 750mA
- No MOSFET, Sense Resistor or Blocking Diode Required
- Constant-Current/Constant-Voltage Operation with Thermal Regulation to Maximize Charge Rate Without Risk of Overheating
- Charges Single Cell Li-Ion Batteries Directly from USB Port
- Preset 4.2V Charge Voltage
- Charge Current Monitor Output for Gas Gauging
- Automatic Recharge
- Charge state pairs of output, no battery and fault status display
- C/10 Charge Termination
- 180μA Supply Current in Shutdown
- 2.9V Trickle Charge Threshold
- Soft-Start Limits Inrush Current
- Available in SOT23 Package

Package

Typical Application Circuit

Pin Description

Pin No.		Pin	Din Famation			
SOT-23-5L	SOT-23-6L	Name	Pin Function			
1	1	CHRG	Open-Drain Charge Status Output.			
2	2	GND	Ground.			
3	3	BAT	Charge Current Output.			
4	4	VCC	Positive Input Supply Voltage.			
-	5	STDBY	The completion of battery charging instructions side.			
5	6	PROG	Charge Current Program, Charge Current Monitor and Shutdown Pin.			

Functional Block Diagram

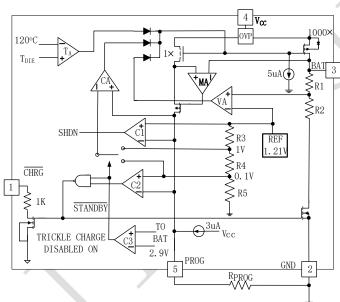


Figure 1. Block Diagram(AP5054HTBER)

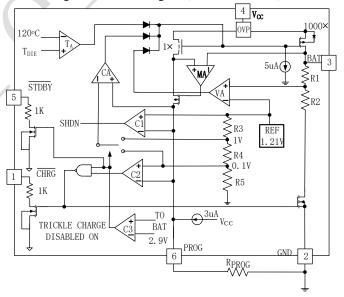


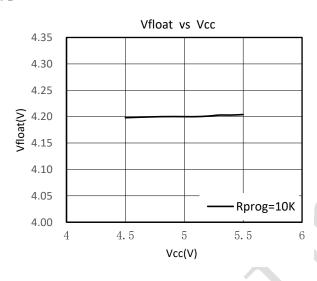
Figure 2. Block Diagram(AP5054HTCER)

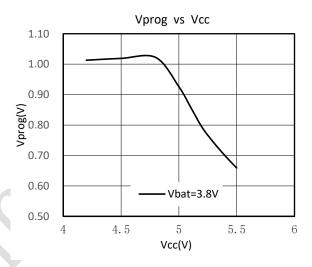
Absolute Maximum Ratings

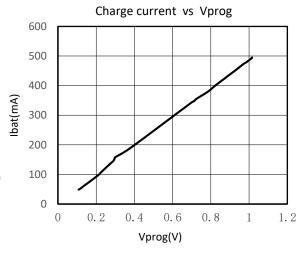
PARAMETER	SYMBOL	MAXIMUM RATING	UNIT
Input Supply Voltage	V_{cc}	V_{SS} -0.3 \sim V_{SS} +20	
PROG pin Voltage	Vprog	V_{SS} -0.3 \sim 5.5+0.3	
BAT pin Voltage	Vbat	Vss-0.3~8	V
CHRG pin Voltage	Vchrg	V_{SS} -0.3 \sim V_{SS} +8	
STDBY pin Voltage	Vstdby	V_{SS} -0.3 \sim V_{SS} +8	
BAT pin Current	Ibat	750	mA
PROG pin Current	Iprog	750	μΑ
Operating Ambient Temperature	Topa	-40~+85	
Storage Temperature	Tstr	-65∼+125	°C
Lead Temperature (Soldering, 10s)		260	

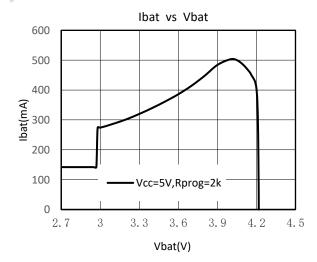
Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

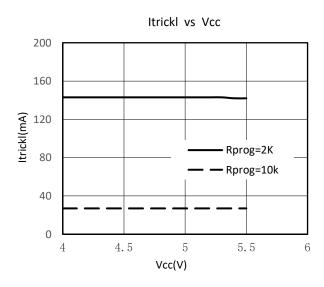
Electrical Characteristics

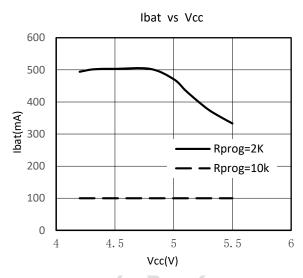

Parameter	Symbol	CONDITION	MIN	TYP	MAX	UNIT
Input supply voltage	Vcc ₁		4.25		20	V
Operation Voltage	Vcc ₂		4.25		5.5	V
Input Voltage OVP	V _{OVP}	V _{CC} Rising		6.1	6.4	V
OVP Hysteresis	V _{OVP-HYS}			0.25		V
		Charge mode, R _{PROG} =10K		350		μΑ
		Standby mode		150	500	μΑ
Input supply current	Icc	Shutdown mode(R _{PROG} not				
		connected, Vcc <vbat or<="" td=""><td></td><td>180</td><td></td><td>μΑ</td></vbat>		180		μΑ
		Vcc <vuv)< td=""><td></td><td></td><td></td><td></td></vuv)<>				
Regulated Output Voltage	Vfloat	$T_A=25$ °C, $I_{BAT}=40$ mA	4.16		4.24	V
		R _{PROG} =10k,Current mode	85	100	110	mA
)	R _{PROG} =2k,Current mode	465	500	530	mA
BAT pin Current	Ibat	Standby mode, Vbat=4.3V	0	-2.5	-6	μΑ
		Shutdown mode		-1	-2.5	μΑ
		Sleep mode, Vcc=0V		-0.05	-0.5	μΑ
Trickle charge current	Itrikl	Vbat <vtrikl, rprog="2k</td"><td>135</td><td>150</td><td>180</td><td>mA</td></vtrikl,>	135	150	180	mA
Trickle charge Threshold Voltage	Vtrikl	R _{PROG} =10K,Vbat Rising	2.78	2.9	3.05	V
Trickle voltage hysteresis voltage	Vtrhys	$R_{PROG} = 10k$	100	135	250	mV
Vcc Undervoltage lockout Threshold	Vuv	From Vcc low to high	3.6	3.8	4.05	V
Vcc undervoltage lockout hysteresis	Vuvhys		150	200	300	mV
Vcc-Vbat Lockout Threshold	Vasil	Vcc from low to high	45	280	400	mV
voltage	Vasd	Vcc from high to low	5	100	230	mV
C/10 Termination Current	Iterm	R _{PROG} =10k		0.06		mA/mA


AP5054H


Chipown


Threshold		R _{PROG} =2k		0.10		mA/mA
PROG pin Voltage	Vprog	R _{PROG} =10k, Current mode	0.93	1.0	1.07	V
CHRG pin Output low voltage	Vchrg	Ichrg=1mA		1.2	1.5	V
STDBY pin Output low voltage	Vstdby	Istdby=1mA		1.2	1.5	V
Recharge Battery threshold Voltage	ΔVrecg	$V_{ m FLOAT}$ - $V_{ m RECHRG}$	80	160	280	mV
Limited temperature patterns in the junction temperature	Tlim			145		°C


Typical Performance Characteristics



Ordering Information

Part Numbers	Marks	Packages		
AP5054HTBER	K5YWW¹	SOT-23-5L		
AP5054HTCER	K5YWW¹	SOT-23-6L		

1.YWW= date code

AP5054H

Pin Function

CHRG: Open-Drain Charge Status Output. When the battery is charging, the CHRG pin is pulled low by an internal Nchannel MOSFET. When the AP5054H detects an under voltage lockout condition and the charge cycle is completed, CHRG is forced high impedance.

GND: Ground.

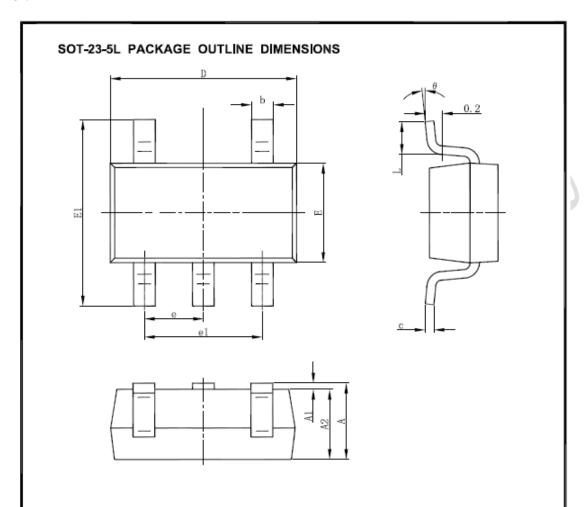
BAT: Charge Current Output. Provides charge current to the battery and regulates the final float voltage to 4.2V. An internal precision resistor divider from this pin sets the float voltage which is disconnected in shutdown mode.

VCC: Positive Input Supply Voltage. Provides power to the charger, VCC range from 4.25V to 20V and operation voltage from 4.25V to 5.5V. VCC pin should be bypassed with at least a 1µF capacitor. When VCC drops to within 30mV of the BAT pin voltage, the AP5054H enters shutdown mode, dropping I_{BAT} to less than 2µA.

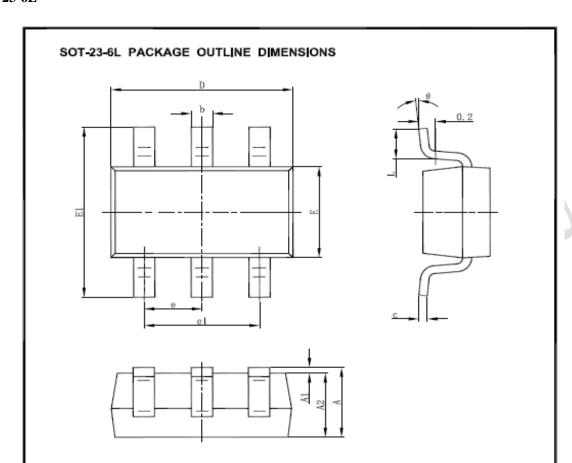
STDBY(AP5054HTBER): The completion of battery charging instructions side. When the battery charge is complete, STDBY pulled low by internal switches, indicating the completion of charging. In addition, STDBY pin will be in a high-impedance state.

PROG: Charge Current Program, Charge Current Monitor and Shutdown Pin. The charge current is programmed by connecting a 1% resistor, R_{PROG}, to ground. When charging in trickle-current mode, this pin servos to 0.1V.When charging in constant-current mode, this pin servos to 1V. In all modes, the voltage on this pin can be used to measure the charge current using the following formula:

 $I_{BAT} = (V_{PROG}/R_{PROG}) \cdot 1000.$


The P_{ROG} pin can also be used to shut down the charger. Disconnecting the program resistor from ground allows a 3uA current to pull the P_{ROG} pin high. When it reaches the 1.21V shutdown threshold voltage, the charger enters shutdown mode, charging stops and the input supply current drops to 180μA. This pin is also clamped to approximately 2.4V. Driving this pin to voltages beyond the clamp voltage will draw currents as high as 1.5mA. Reconnecting R_{PROG} to ground will return the charger to normal operation.

6/9


Package Information

SOT-23-5L

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOT-23-6L

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Important Notice

Chipown Microelectronics Co. Ltd. reserves the right to make changes without further notice to any products or specifications herein. Chipown Microelectronics Co. Ltd. does not assume any responsibility for use of any its products for any particular purpose, nor does Chipown Microelectronics Co. Ltd assume any liability arising out of the application or use of any its products or circuits. Chipown Microelectronics Co. Ltd does not convey any license under its patent rights or other rights nor the rights of others.

