

低电压复位检测器

■ 产品简介

HG811系列是一款具有电压检测功能的微处理器复位芯片,它带有使能控制端,用于监控微控制器或其他逻辑系统的电源电压。

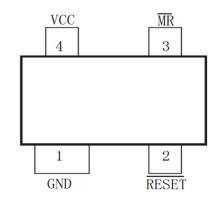
它可以在上电掉电和节电情况下,或在电源电压低于预设的检测电压 V_{th} 时,向系统提供复位信号。同时,在上电或电源电压恢复到高于预设的检测电压 V_{th} 时,或使能 \overline{MR} 电压由低电平变为高电平时, $V_{\overline{RESET}}$ 输出将延时 T_{ro} 时间后输出变为高电平。

HG811 系列芯片当输入电压低于检测电压 V_{th} 时, V_{RESET} 输出为低电平;当使能控制端 \overline{MR} 电压为低电平时, V_{RESET} 输出也为低电平。应用简单,无需外部器件。

■ 产品特点

- 低功耗: 2uA (典型值) @V_{MR}=V_{CC}
- 宽工作电压范围: 1V~6.0V
- 具有 V_{CC} 瞬态抗干扰
- 应用简单,无需外部元件

- 内置复位延时时间 500ms (典型值)
- 高精度复位电压值: ±2.5%
- 具有使能控制端MR, 低电平有效
- 小体积封装: SOT143

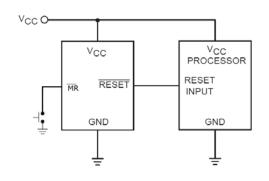

■ 产品用途

- 电池供电设备
- 掉电检测器
- 电脑、微机处理器

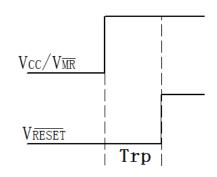
- 非易失性 RAM 信号存储保护器
- 临界 MP 电源监控
- 嵌入式系统

■ 封装形式和管脚定义功能

管脚序号	管脚定义	功能说明		
S0T143	自脚た人			
1	GND	电源负极端		
2	RESET	复位输出端		
3	\overline{MR}	使能控制端		
4 VCC		电源正极端		



■ 型号选择


型号	最高输入电压 V _{CC} (V)	复位电压 V _{th} (V)	V _{th} 容差	封装形式
HG811L	6.0	4.63	<u>+</u> 2.5%	
HG811M	6.0	4.38	<u>+</u> 2.5%	
HG811J	6.0	4.00	<u>+</u> 2.5%	S0T143
HG811T	6.0	3.08	<u>+</u> 2.5%	301143
HG811S	6.0	2.93	<u>+</u> 2.5%	
HG811R	6.0	2.63	<u>+</u> 2.5%	

■ 应用电路

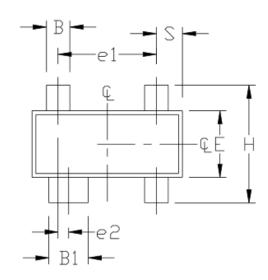
■ 上电复位时间

■ 极限参数

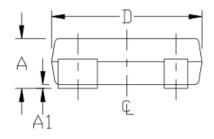
项目	符号	说明	极限值	单位
45	V _{cc}	输入电压	6.5	V
电压	V_{RESET}	复位输出电压	-0.3∼ Vcc+0.3	V
功耗	PD	SOT143	SOT143 200	
	T _A	工作温度范围	-20—70	${\mathbb C}$
温度	T _S	存储温度范围	-50—125	C
	Tw	焊接温度	260	℃,10s

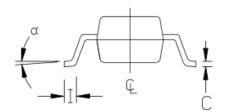
■ 电学特性

HG811


(Ta=25℃,除非特别指定)

符号	参数	测试条件		最小	典型	最大	单位
V _{CC}	工作电压			1.0	1	6.0	V
$V_{\sf th}$	输入检测电压	$V_{CC}=V_{th}$ for $V_{RESET}=H\rightarrow L$,No Load	0.975*V _{th}	$V_{\sf th}$	1.025*V _{th}	V
I_{CCH}	静态电流	V _{CC} =6V, V _{MR} =VCC, No Load		1	-	5	uA
I_{CCL}	待机电流	V _{CC} =6V, V _{MR} =GND, No Load		1	-	32	uA
I_{MR}	使能拉电流	V _{CC} =6V, V _{MR} =GND, No Load		1	I	25	uA
T_{rd}	复位下降沿时间	$V_{CC} = V_{th}$ to $V_{th} - 100 \text{mV}$		_	150	I	ns
T _{rp}	输出复位时间	HG811Z/R/S/T: V _{CC} =V _{MR} =0 to 3.5V or V _{MR} =0to3.5V, V _{CC} =3.5V HG811M/L: V _{CC} =V _{MR} =0 to 5V or V _{MR} =0 to 5V, V _{CC} =5V	No Load	85	500	900	ms
V_{OL}	输出低电压	$V_{\text{CC}}=V_{\text{th}}$ min, $I_{\text{SINK}}=3.2$ mA		_	ı	0.5	V
V_{OH}	输出高电压	$V_{CC}>V_{th}$ max, $I_{SOURCE}=500$ uA		0.8Vcc	_	_	V
V_{MRH}	输入高电平	V _{CC} =6V, V _{RESET} =V _{CC} , No Load		0.7* V _{CC}	I	V_{CC}	V
V_{MRL}	输入低电平	V _{CC} =6V, V _{RESET} =GND, No Load		0		0.2*V _{CC}	V
t_{MR}	使能电平最小脉宽			10	_	-	us
$\frac{\triangle Vth}{Vth \! \ast \! \triangle Ta}$	温度系数	-20°C≤Ta≤60°C		_	±200	-	ppm∕ ℃




■ 封装信息

S0T143

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.031	0.047	0.787	1.194
A1	0.001	0.005	0.025	0.127
В	0.014	0.022	0.356	0.559
B1	0.030	0.038	0.762	0.965
С	0.0034	0.006	0.086	0.152
D	0.105	0.120	2.667	3.048
Ε	0.047	0.055	1.194	1.397
e1	0.071	0.079	1.803	2.007
e2	0.008 BSC		0.200 BSC	
Н	0.082	0.098	2.083	2.489
I	0.004	0.012	0.102	0.305
S	0.018	0.024	0.450	0.600
α	0.	8°	0°	8°

重要声明:

华冠半导体保留未经通知更改所提供的产品和服务。客户在订货前应获取最新的相关信息,并核实这些信息是否最新且完整的。

客户在使用华冠半导体产品进行系统设计和整机制造时有责任遵守安全标准并采取安全措施,以避免潜在风险可能导致人身伤害或财产损失情况的发生。

华冠半导体产品未获得生命支持、军事、航空航天等领域应用之许可,华冠半导体将不承担产品在这些领域应用造成的后果。

华冠半导体的文档资料,仅在没有对内容进行任何篡改且带有相关授权的情况下才允许进行复制。华冠半导体对篡改过的文件不承担任何责任或义务。