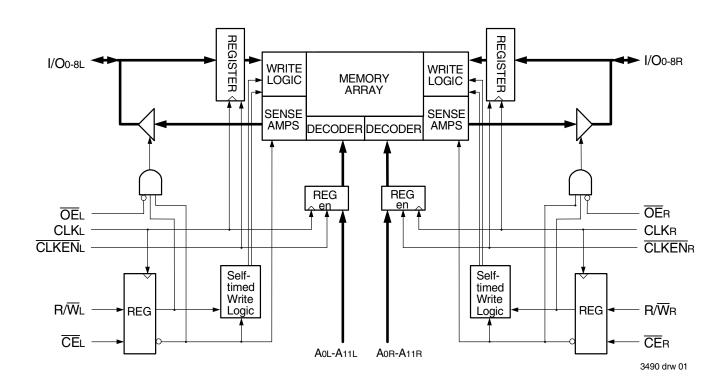


HIGH SPEED 36K (4K X 9) SYNCHRONOUS DUAL-PORT RAM


70914S

Features

- High-speed clock-to-data output times
 - Commercial: 12ns (max.)
- Low-power operation
 - IDT70914S
 - Active: 850 mW (typ.) Standby: 50 mW (typ.)
- Architecture based on Dual-Port RAM cells
 - Allows full simultaneous access from both ports
- Clock Enable feature
- ◆ TTL-compatible, single 5V (± 10%) power supply

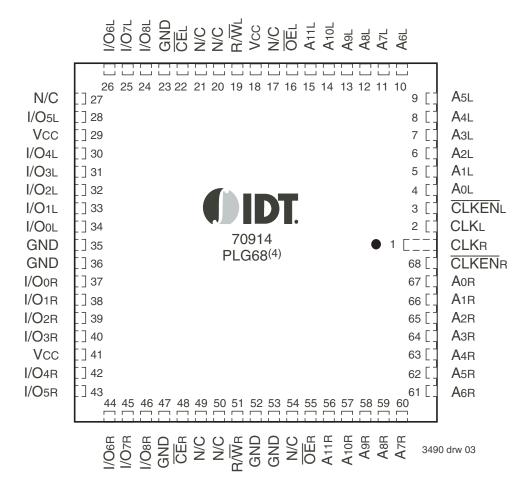
- Synchronous operation
 - 4ns setup to clock, 1ns hold on all control, data, and address inputs
 - Data input, address, and control registers
 - Fast 12ns clock to data out
 - Self-timed write allows fast cycle times
 - 16ns cycle times, 60MHz operation
- Guaranteed data output hold times
- Available in an 80-pin TQFP
- Green parts available, see ordering information

Functional Block Diagram

JULY 2019

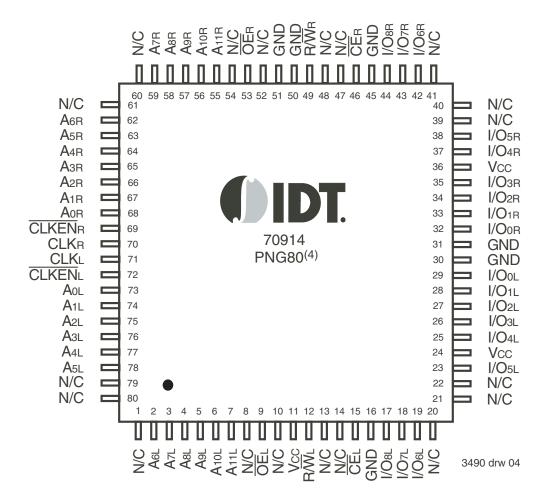
Description

The IDT70914 is a high-speed 4K x 9 bit synchronous Dual-Port RAM. The memory array is based on Dual-Port memory cells to allow simultaneous access from both ports. Registers on control, data, and address inputs provide low set-up and hold times. The timing latitude provided by this approach allow systems to be designed with very short cycletimes. With an input data register, this device has been optimized for applications having unidirectional data flow or bidirectional data flow in bursts.


The IDT70914 utilizes a 9-bit wide data path to allow for parity at the

user's option. This feature is especially useful in data communication applications where it is necessary to use a parity bit for transmission/reception error checking.

Fabricated using CMOS high-performance technology, these Dual-Ports typically operate on only 850mW of power at maximum high-speed clock-to-data output times as fast as 12ns. An automatic power down feature, controlled by $\overline{\text{CE}}$, permits the on-chip circuitry of each port to enter a very low standby power mode.


The IDT70914 is packaged in an 80-pin TQFP.

Pin Configurations (1,2,3)

- 1. All Vcc pins must be connected to power supply.
- 2. All ground pins must be connected to ground supply.
- 3. J68-1 package body is approximately .95 in x .95 in x .17 in.
- 4. This package code is used to reference the package diagram.

Pin Configuration^(1,2,3) (con't.)

- 1. All Vcc pins must be connected to power supply.
- 2. All ground pins must be connected to ground supply
- 3. PN80-1 package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Com'l Only	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
VTERM ⁽²⁾	Terminal Voltage	-0.5 to Vcc	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-65 to +150	°C
ЮИТ	DC Output Current	50	mA

3490 tbl 01

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 10%.

Capacitance

(TA = +25°C, f = 1.0MHz) TQFP Only

Symbol	Parameter	Parameter Conditions		Unit
Cin	Input Capacitance	VIN = 3dV	8	pF
Соит	Output Capacitance	Vout = 3dV	9	pF

NOTES:

- 1. These parameters are determined by device characterization, but are not production tested.
- 2. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.

Maximum Operating Temperature and Supply Voltage^(1,2)

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%

3490 tbl 02

NOTES:

- 1. This is the parameter Ta. This is the "instant on" case temperature
- 2. Industrial temperature: for specific speeds, packages and powers contact your

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
VIH	Input High Voltage	2.2	_	6.0 ⁽²⁾	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

3490 tbl 03

NOTES:

- 1. $VIL \ge -1.5V$ for pulse width less than 10ns.
- 2. VTERM must not exceed Vcc + 10%.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5.0V ± 10%)

			70914S		
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, Vin = 0V to Vcc	_	10	μΑ
ILO	Output Leakage Current	CE = VH, Vout = 0V to Vcc	_	10	μΑ
Vol	Output Low Voltage	loL = +4mA	-	0.4	V
Vон	Output High Voltage	IOH = -4mA	2.4	_	V

NOTE:

1. At Vcc < 2.0V, input leakages are undefined

3490 tbl 05

DC Electrical Characteristics Over the Operating $\underline{\text{Temperature and Supply Voltage Range}^{(4)}} \text{ (Vcc = 5V <math>\pm$ 10%)}

				70914S12 Com'l Only		70914S15 Com'l Only		
Symbol	Parameter	Test Condition	Version	Тур. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Unit
lcc	Dynamic Operating Current (Both Ports Active)	$\overline{\text{CE}}\text{L}$ and $\overline{\text{CE}}\text{R} = \text{ViL}$, Outputs Disabled $f = \text{fmax}^{(1)}$	COM'L	190	310	180	300	mA
ISB1	Standby Current (Both Ports - TTL Level Inputs)	$\overline{\text{CE}}_L$ and $\overline{\text{CE}}_R$ = ViH $f = f_{MAX}^{(1)}$	COM'L	95	150	90	140	mA
ISB2	Standby Current (One Port - TTL Level Inputs)		COM'L	170	220	160	210	mA
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	$\begin{array}{l} \mbox{Both Ports \overline{CE}_{R} and} \\ \mbox{$\overline{CE}_{L} \geq V_{CC}$ - 0.2V} \\ \mbox{$V_{IN} \geq V_{CC}$ - 0.2V$ or} \\ \mbox{$V_{IN} \leq 0.2V$, $f = 0^{(2)}$} \end{array}$	COM'L	10	15	10	15	mA
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	$\begin{array}{ c c c } \hline \overline{CE}\text{-}A^* & \leq 0.2V \text{ and} \\ \hline \overline{CE}\text{-}B^* & \geq V\text{cc} - 0.2V^{(3)} \\ \hline V\text{IN} & \geq V\text{cc} - 0.2V \text{ or} \\ \hline V\text{IN} & \leq 0.2V, \text{ Active Port} \\ \hline \text{Outputs Disabled} \\ \hline f & = f\text{Max}^{(1)} \end{array}$	COM'L	165	210	155	200	mA

3490 tbl 06a

				70914S20 Com'l Only		
Symbol	Parameter	Test Condition	Version	Typ. ⁽²⁾	Max.	Unit
lcc	Dynamic Operating Current (Both Ports Active)	$\overline{\text{CE}}\text{L}$ and $\overline{\text{CE}}\text{R} = \text{V}_{\text{IL}}$, Outputs Disabled $f = f_{\text{MAX}}^{(1)}$	COM'L	170	290	mA
lsb1	Standby Current (Both Ports - TTL Level Inputs)	$\overline{CE}L$ and $\overline{CE}R = VIH$ $f = f_{MAX}^{(1)}$	COM'L	85	130	mA
lsB2	Standby Current (One Port - TTL Level Inputs)		COM'L	150	200	mA
lsB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	Both Ports $\overline{CE}R$ and $\overline{CE}L \ge Vcc - 0.2V$ $Vin \ge Vcc - 0.2V$ or $Vin \le 0.2V$, $f = 0^{(2)}$	COM'L	10	15	mA
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	$\begin{array}{ c c c } \hline \overline{CE}"\text{A"} \leq 0.2V \text{ and} \\ \hline \overline{CE}"\text{B"} \geq V\text{CC} - 0.2V^{(3)} \\ \hline V\text{IN} \geq V\text{CC} - 0.2V \text{ or} \\ \hline V\text{IN} \leq 0.2V, \text{ Active Port} \\ \hline \text{Outputs Disabled} \\ \hline f = f\text{MAX}^{(1)} \end{array}$	COM'L	145	190	mA

- 1. At fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcvc, using "AC TEST CONDITIONS" at input levels
- 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. Vcc = 5V, Ta = 25°C for Typ, and are not production tested. Icc pc = 150mA (Typ)
- 5. Industrial temperature: for specific speeds, packages and powers contact your sales office.

70914S High-Speed 36K (4K x 9) Synchronous Dual-Port Static RAM

AC Test Conditions

710 1031 00Haltions	
Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

3490 tbl 07

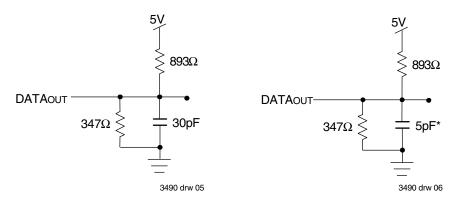


Figure 1. AC Output Test load.

Figure 2. Output Test Load (For tcklz, tckHz, tolz, and toHz). *Including scope and jig.

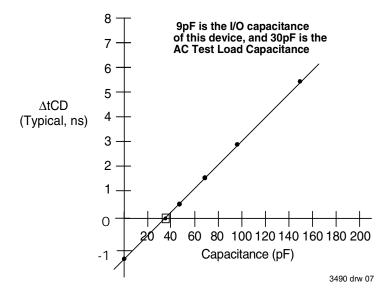


Figure 3. Typical Output Derating (Lumped Capacitive Load).

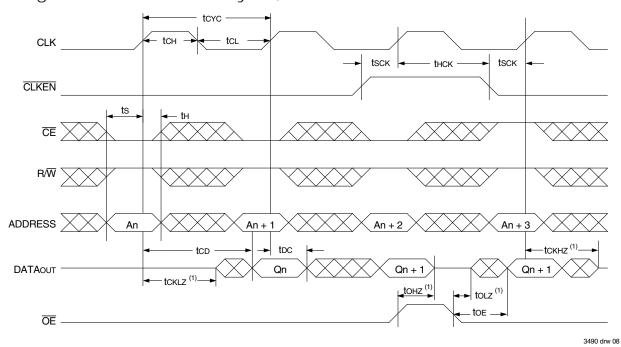
AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $^{(3)}$ (Commercial: Vcc = 5V ± 10%, TA = 0°C to +70°C)

	7 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	70914S12 Com'l Only		70914S15 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tcyc	Clock Cycle Time	16		20	_	ns
tсн	Clock High Time	6		6	_	ns
tcı	Clock Low Time	6		6	_	ns
tcp	Clock High to Output Valid		12	_	15	ns
ts	Registered Signal Set-up Time	4		4	_	ns
tн	Registered Signal Hold Time	1	_	1	_	ns
toc	Data Output Hold After Clock High	3		3	_	ns
tcklz	Clock High to Output Low-Z ^(1,2)	2		2	_	ns
tckHz	Clock High to Output High-Z ^(1,2)	_	7	_	7	ns
toe	Output Enable to Output Valid	_	7	_	8	ns
toLZ	Output Enable to Output Low-Z ^(1,2)	0		0	_	ns
tonz	Output Disable to Output High-Z ^(1,2)		7	_	7	ns
tsck	Clock Enable, Disable Set-up Time	4	_	4	_	ns
tHCK	Clock Enable, Disable Hold Time	2	_	2	_	ns
Port-to-Port D	elay					
tcwdd	Write Port Clock High to Read Data Delay	_	25	_	30	ns
tcss	Clock-to-Clock Setup Time		13		15	ns

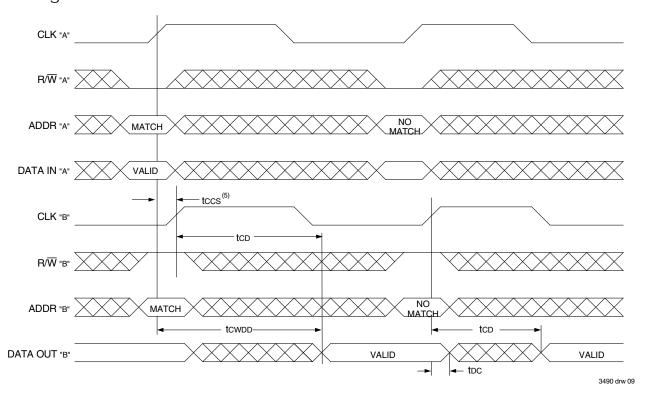
3490 tbl 08a

		70914S20 Com'l Only		
Symbol	Parameter	Min.	Max.	Unit
tcyc	Clock Cycle Time	20	_	ns
tсн	Clock High Time	8	_	ns
tcL	Clock Low Time	8	_	ns
tcp	Clock High to Output Valid	_	20	ns
ts	Registered Signal Set-up Time	5	_	ns
tн	Registered Signal Hold Time	1	_	ns
toc	Data Output Hold After Clock High	3	_	ns
tcklz	Clock High to Output Low-Z ^(1,2)	2	_	ns
tckHz	Clock High to Output High-Z ^(1,2)	_	9	ns
toe	Output Enable to Output Valid	_	10	ns
tolz	Output Enable to Output Low-Z ^(1,2)	0	_	ns
tонz	Output Disable to Output High-Z ^(1,2)	_	9	ns
tsck	Clock Enable, Disable Set-up Time	5		ns
tнск	Clock Enable, Disable Hold Time	2	_	ns
Port-to-Port D	Delay			
tcwdd	Write Port Clock High to Read Data Delay	_	35	ns
tcss	Clock-to-Clock Setup Time	_	15	ns

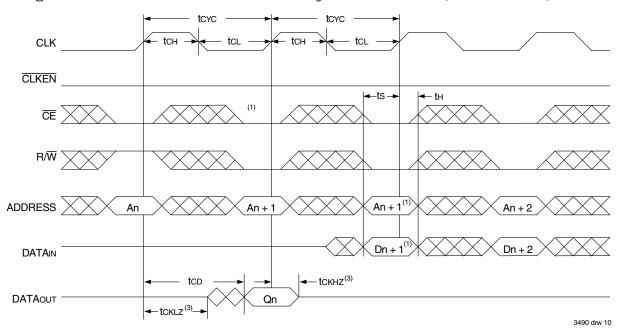
NOTES:


- 1. Transition is measured 0mV from Low or High impedance voltage with the Output Test Load (Figure 2).
- 2. This parameter is guaranteed by device characterization, but is not production tested.
- 3. Industrial temperature: for specific speeds, packages and powers contact your sales office.

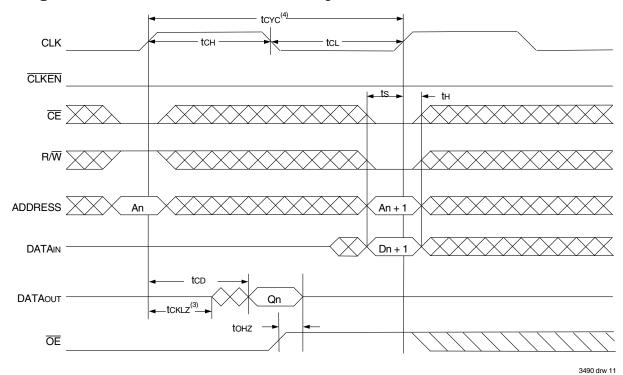
3490 tbl 08b


High-Speed 36K (4K x 9) Synchronous Dual-Port Static RAM

Timing Waveform of Read Cycle, Either Side



Timing Waveform of Write with Port-to-Port Read^(2,3,4)



- 1. Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. $\overline{CE}L = \overline{CE}R = VIL$, $\overline{CLKEN}L = \overline{CLKEN}R = VIL$.
- 3. \overline{OE} = V_{IL} for the reading port, port 'B'.
- 4. All timing is the same for left and right ports. Ports "A" may be either the left or right port. Port "B" is opposite from port "A".
- If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwpp.
 If tccs > maximum specified, then data from right port READ is not valid until tccs + tcp. tcwpp does not apply in this case.

Timing Waveform of Read-to-Write Cycle No. 1^(1,2) (tcyc = min.)

Timing Waveform of Read-to-Write Cycle No. 2⁽⁴⁾ (tcyc > min.)

- 1. For tcyc = min.; data out coincident with the rising edge of the subsequent write clock can occur. To ensure writing to the correct address location, the write must be repeated on the second write clock rising edge. If $\overline{CE} = V_{IL}$, invalid data will be written into array. The An+1 must be rewritten on the following cycle.
- 2. OE LOW throughout.
- 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 4. For tcyc > min.; $\overline{\text{OE}}$ may be used to avoid data out coincident with the rising edge of the subsequent write clock. Use of $\overline{\text{OE}}$ will eliminate the need for the write to be repeated.

Functional Description

The IDT70914 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide very short set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing.

The internal write pulse width is dependent on the LOW to HIGH

transitions of the clock signal allowing the shortest possible realized cycle times. Clock enable inputs are provided to stall the operation of the address and data input registers without introducing clock skew for very fast interleaved memory applications.

A HIGH on the $\overline{\text{CE}}$ input for one clock cycle will power down the internal circuitry to reduce static power consumption.

Truth Table I: Read/Write Control(1)

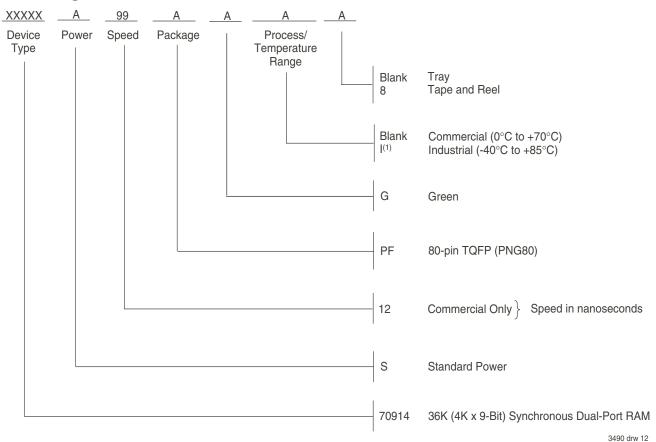
		Input	s	Outputs	
Synchronous ⁽³⁾ Asynchronous					
CLK	CE	R/W	ŌĒ	I/O0-8	Mode
1	Н	Χ	Х	High-Z	Deselected, Power-Down
1	L	L	X	DATAIN	Selected and Write Enabled
1	L	Н	L	DATAout	Read Selected and Data Output Enable Read
1	Х	Χ	Н	High-Z	Outputs Disabled

3490 tbl 09

Truth Table II: Clock Enable Function Table(1)

	Inputs		Register Inputs		Register Outputs ⁽⁴⁾	
Mode	CLK ⁽³⁾	CLKEN ⁽²⁾	ADDR	DATAIN	ADDR	DATAOUT
Load "1"	1	L	Н	Н	Н	Н
Load "0"	↑	L	L	L	L	L
Hold (do nothing)	1	Н	Х	Х	NC	NC
. 0,	Х	Н	Х	Х	NC	NC

NOTES: 3490 tbl 10


- 1. 'H' = HIGH voltage level steady state, 'h' = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition, 'L' = LOW voltage level steady state 'l' = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition, 'X' = Don't care, 'NC' = No change
- 2. CLKEN = VIL must be clocked in during Power-Up.
- 3. Control signals are initiated and terminated on the rising edge of the CLK, depending on their input level. When RW and CE are LOW, a write cycle is initiated on the LOW-to-HIGH transition of the CLK. Termination of a write cycle is done on the next LOW-to-HIGH transition of the CLK.
- 4. The register outputs are internal signals from the register inputs being clocked in or disabled by CLKEN.

70914S High-Speed 36K (4K x 9) Synchronous Dual-Port Static RAM

Commercial Temperature Range

Ordering Information

NOTES:

Industrial temperature range is available on selected TQFP packages in standard power. For specific speeds, packages and powers contact your sales office.
 LEAD FINISH (SnPb) parts are Obsoleted. Product Discontinuation Notice - PDN# SP-17-02
 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
12	70914S12PFG	PNG80	TQFP	С
	70914S12PFG8	PNG80	TQFP	С

Commercial Temperature Range

Datasheet Document History

3/10/99: Initiated datasheet document history

Converted to new format

Cosmetic and typographical corrections

Page 2 and 3 Added additional notes to pin configurations

06/07/99: Changed drawing format 11/10/99: Replaced IDT logo

Increased storage temperature parameter 05/24/00: Page 4

Clarified TA parameter

DC Electrical parameters-changed wording from "open" to "disabled" Page 5

Changed ±200mV to 0mV in notes

01/12/01: Removed PGA pinout (obsolete package)

Changed cycle time of 12ns part from 17ns (58MHz) to 16ns (60MHz)

Removed "IDT" from orderable part number 10/21/08: Page 11 05/24/10: Page 1 Added green parts availability to features

Added green indicator to ordering information Page 11

Removed Military and Industrial Temperature Ranges from datasheet header 06/05/15: Pages 1-12

Page 1 Removed Military speed offerings from the Features Removed MIL-PRF 38535 QML support information Page 2

Pages 2,3 &11 The package codes J68-1 and PN80-1 changed to J68 and PN80

Page 4 Removed the military and industrial offerings in the Absolute Max Ratings & the Max Operating Temp tables

Page 5 Removed the military and industrial offerings in the DC Elec Chars tables

Page 6 Corrected typo in the Typical Output Derating drawing

Removed military offering for the 20 & 25 speed grades in the AC Elec Chars table Page 7

Removed the military temp range information from the AC Elec Chars table title

Page 11 Added Tape and Reel to and removed military offering & 25ns speed grade from the Ordering Information 04/28/16: Page 2 Changed diagram for the J68 pin configuration by rotating package pin labels and pin numbers 90 degrees

clockwise to reflect pin1 orientation and added pin 1 dot at pin 1

Removed all four chamfers from J68 and aligned the top and bottom pin labels in the standard direction

Page 3 Changed diagram for the PN80 pin configuration by rotating package pin labels and pin numbers 90 degrees

counter clockwise to reflect pin 1 orientation and added pin 1 dot at pin 1

Added the IDT logo, changed the text to be in alignment with new diagram marking specs

for all pin configurations and updated footnote references for the J68 & the PN80 pin configurations

Page 11 Removed Industrial temp range information from the Ordering Information

02/02/18: Product Discontinuation Notice - PDN# SP-17-02

Last time buy expires June 15, 2018

08/01/19: Page 1 & 11 Deleted obsolete Commercial speed grades 15/20ns

> Page 1 & 11 Deleted obsolete PLG68 PLCC package Page 11 Added Orderable Part Information table

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/