

RMLV0408E Series

4Mb Advanced LPSRAM (512-kword × 8-bit)

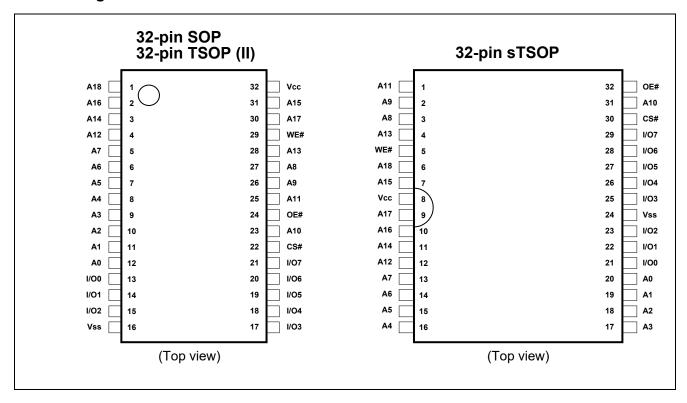
R10DS0206EJ0201 Rev.2.01 2020.2.20

Description

The RMLV0408E Series is a family of 4-Mbit static RAMs organized 524,288-word × 8-bit, fabricated by Renesas's high-performance Advanced LPSRAM technologies. The RMLV0408E Series has realized higher density, higher performance and low power consumption. The RMLV0408E Series offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is offered in 32-pin SOP, 32-pin TSOP (II) or 32-pin sTSOP.

Features

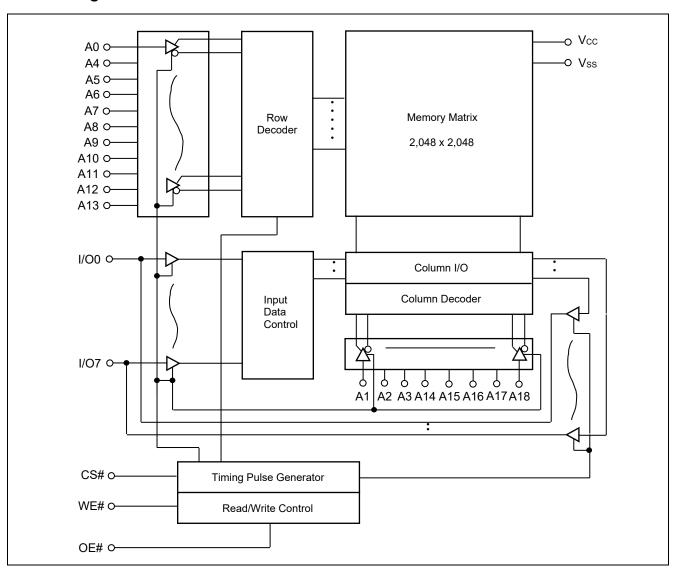
Single 3V supply: 2.7V to 3.6VAccess time: 45ns (max.)


Current consumption:— Standby: 0.4μA (typ.)

- Equal access and cycle times
- Common data input and output
 - Three state output
- Directly TTL compatible
 All inputs and outputs
- Battery backup operation

Orderable part number information

Orderable part number	Access time	Temperature range	Package	Shipping container
RMLV0408EGSA-4S2#AA*			8mm×13.4mm 32-pin	Tray
RMLV0408EGSA-4S2#KA*			plastic sTSOP	Embossed tape
RMLV0408EGSB-4S2#AA*	45 ns	-40 ~ +85°C	400-mil 32pin	Tray
RMLV0408EGSB-4S2#HA*	40 115	-40 ~ +65 C	plastic TSOP (II)	Embossed tape
RMLV0408EGSP-4S2#CA*			525-mil 32-pin	Tube
RMLV0408EGSP-4S2#HA*			plastic SOP	Embossed tape


Pin Arrangement

Pin Description

Pin name	Function	
Vcc	Power supply	
Vss	Ground	
A0 to A18	Address input	
I/O0 to I/O7	Data input/output	
CS#	Chip select	
WE#	Write enable	
OE#	Output enable	

Block Diagram

Operation Table

CS#	WE#	OE#	I/O0 to I/O7	Operation
Н	Х	Χ	High-Z	Standby
L	Н	L	Dout	Read
L	L	Х	Din	Write
L	Н	Н	High-Z	Output disable

Note 1. H: V_{IH} L: V_{IL} X: V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	unit
Power supply voltage relative to V _{SS}	Vcc	-0.5 to +4.6	V
Terminal voltage on any pin relative to Vss	VT	-0.5*2 to V _{CC} +0.3*3	V
Power dissipation	PT	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to +150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 2. -3.0V for pulse ≤ 30 ns (full width at half maximum)

3. Maximum voltage is +4.6V.

DC Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	Vcc	2.7	3.0	3.6	V	
	Vss	0	0	0	V	
Input high voltage	VIH	2.2	_	V _{CC} +0.3	V	
Input low voltage	VIL	-0.3	_	0.6	V	4
Ambient temperature range	Та	-40	_	+85	°C	

Note 4. -3.0V for pulse ≤ 30ns (full width at half maximum)

DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions				
Input leakage current	ILI	_	_	1	μΑ	Vin = Vss	Vin = V _{SS} to V _{CC}			
Output leakage current	110	_	_	1	μА		CS# = V _{IH} or OE# =V _{IH} or WE#= V _{IL} , VI/O = V _{SS} to V _{CC}			
Operating current	Icc	_	_	10	mA	CS# =V _{IL} , Others = '	V _{IH} /V _{IL} , II/O = 0mA			
Average operating current	Icc ₁	_	_	20	mA		5ns, duty = 100%, II/O = 0mA, , Others = V _{IH} /V _{IL}			
	ICC1	_	_	25	mA	_	5ns, duty = 100%, II/O = 0mA, , Others = V _{IH} /V _{IL}			
	Icc2	_	_	2.5	mA	_	μs, duty = 100%, II/O = 0mA, 2V, V _{IH} ≥ Vcc-0.2V, V _{IL} ≤ 0.2V			
Standby current	I _{SB}	_	0.1 ^{*5}	0.3	mA		CS# =V _{IH} , Others = V _{SS} to V _{CC}			
Standby current		_	0.4*5	2	μА	~+25°C				
	l	_	-	3	μА	~+40°C	Vin = Vss to Vcc,			
	I _{SB1}	_	_	5	μА	~+70°C	CS# ≥ V _{CC} -0.2V			
		_	_	7	μА	~+85°C				
Output high voltage	Vон	2.4	_	_	V	I _{OH} = -1mA				
	V _{OH2}	Vcc-0.2	_	_	V	I _{OH} = -0.1mA				
Output low voltage	Vol	_	_	0.4	V	I _{OL} = 2.1mA				
	V _{OL2}			0.2	V	I _{OL} = 0.1mA				

Note 5. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=25°C), and not 100% tested.

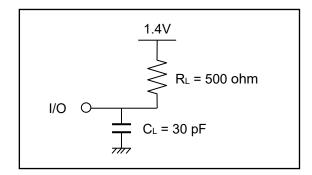
Capacitance

 $(Vcc = 2.7V \sim 3.6V, f = 1MHz, Ta = -40 \sim +85^{\circ}C)$

			•		-	·	,
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	_	_	8	pF	Vin =0V	6
Input / output capacitance	C 1/O	_	_	10	pF	V _{I/O} =0V	6

Note 6. This parameter is sampled and not 100% tested.

AC Characteristics


Test Conditions (Vcc = $2.7V \sim 3.6V$, Ta = $-40 \sim +85$ °C)

• Input pulse levels: $V_{IL} = 0.4V$, $V_{IH} = 2.4V$

Input rise and fall time: 5ns

Input and output timing reference level: 1.4V

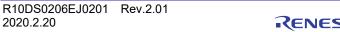
• Output load: See figures (Including scope and jig)

Read Cycle

Parameter	Symbol	Min.	Max.	Unit	Note
Read cycle time	t _{RC}	45	_	ns	
Address access time	t _{AA}	_	45	ns	
Chip select access time	t _{ACS}	_	45	ns	
Output enable to output valid	t _{OE}	_	22	ns	
Output hold from address change	t _{OH}	10	_	ns	
Chip select to output in low-Z	t in low-Z t _{CLZ} 10		_	ns	7,8
Output enable to output in low-Z	t _{OLZ}	5	_	ns	7,8
Chip deselect to output in high-Z	t _{CHZ}	0	18	ns	7,8,9
Output disable to output in high-Z	t _{OHZ}	0	18	ns	7,8,9

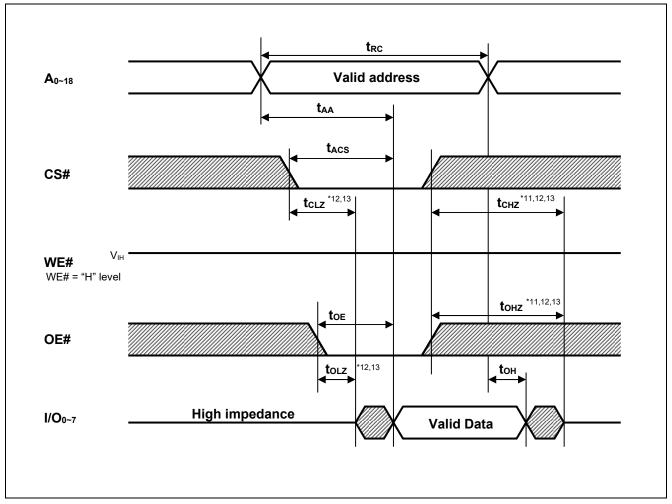
Write Cycle

Parameter	Parameter Symbol N		Max.	Unit	Note
Write cycle time	twc	45	_	ns	
Address valid to write end	taw	35	ı	ns	
Chip select to write end	tcw	35	_	ns	
Write pulse width	twp	35	_	ns	10
Address setup time to write start	tas	0	_	ns	
Write recovery time from write end	twR	0	_	ns	
Data to write time overlap	t _{DW}	25	_	ns	
Data hold from write end	t _{DH}	0	_	ns	
Output enable from write end	tow	5	_	ns	7
Output disable to output in high-Z	t _{OHZ}	0	18	ns	7,9
Write to output in high-Z	t _{WHZ}	0	18	ns	7,9


Note 7. This parameter is sampled and not 100% tested.

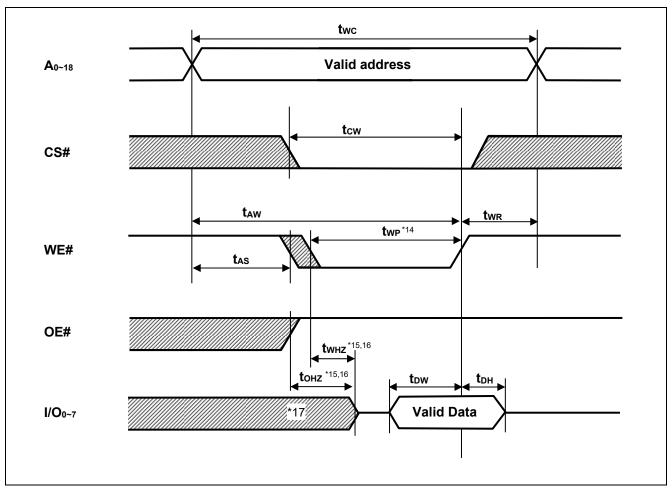
- 8. At any given temperature and voltage condition, t_{CHZ} max is less than t_{CLZ} min, and t_{OHZ} max is less than t_{OLZ} min, for any device.
- 9. t_{CHZ}, t_{OHZ} and t_{WHZ} are defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.
- 10. t_{WP} is the interval between write start and write end.

A write starts when both of CS# and WE# become active


A write is performed during the overlap of a low CS#, a low WE#

A write ends when any of CS#, WE# becomes inactive.

Timing Waveforms

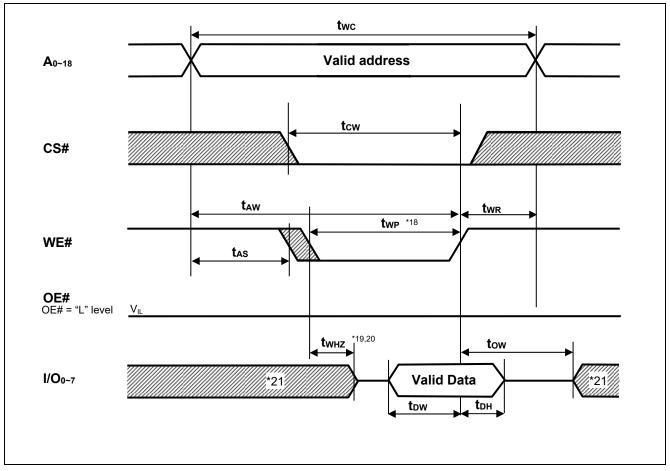

Read Cycle

Note 11. t_{CHZ} and t_{OHZ} are defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.

- 12. This parameter is sampled and not 100% tested.
- 13. At any given temperature and voltage condition, t_{CHZ} max is less than t_{CLZ} min, and t_{OHZ} max is less than t_{OLZ} min, for any device.

Write Cycle (1) (WE# CLOCK, OE#="H" while writing)

Note 14. twp is the interval between write start and write end.


A write starts when both of CS# and WE# become active.

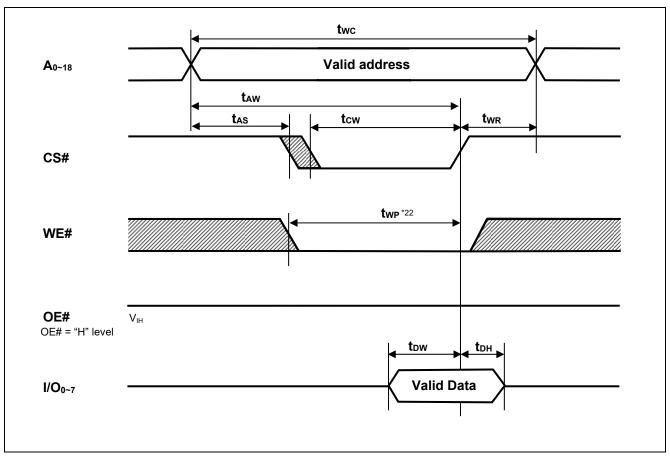
A write is performed during the overlap of a low CS# and a low WE#.

A write ends when any of CS# or WE# becomes inactive.

- 15. t_{OHZ} and t_{WHZ} are defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.
- 16. This parameter is sampled and not 100% tested.
- 17. During this period, I/O pins are in the output state so input signals must not be applied to the I/O pins.

Write Cycle (2) (WE# CLOCK, OE# Low Fixed)

Note 18. twp is the interval between write start and write end.


A write starts when both of CS# and WE# become active.

A write is performed during the overlap of a low CS# and a low WE#.

A write ends when any of CS# or WE# becomes inactive.

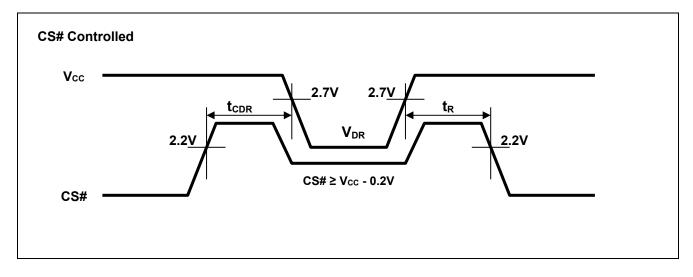
- 19. t_{WHZ} is defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.
- 20. This parameter is sampled and not 100% tested.
- 21. During this period, I/O pins are in the output state so input signals must not be applied to the I/O pins.

Write Cycle (3) (CS# CLOCK)

Note 22. t_{WP} is the interval between write start and write end.

A write starts when both of CS# and WE# become active.

A write is performed during the overlap of a low CS# and a low WE#.


A write ends when any of CS# or WE# becomes inactive.

Low V_{CC} Data Retention Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions*24		
V _{CC} for data retention	V_{DR}	1.5	-	-	V	Vin ≥ 0V, CS# ≥ V _{CC} -0.2V		
		_	0.4*23	2	μА	~+25°C		
Data vatantian avvent	ICCDR	_	_	3	μА	~+40°C	Vcc=3.0V, Vin ≥ 0V,	
Data retention current		_	_	5	μА	~+70°C	CS# ≥ Vcc-0.2V	
		_	_	7	μА	~+85°C		
Chip deselect time to data retention	t _{CDR}	0	_	_	ns	See retention waveform.		
Operation recovery time	t_R	5	_	_	ms			

Note 23. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=25°C), and not 100% tested.

Low Vcc Data Retention Timing Waveforms (CS# controlled)

^{24.} CS# controls address buffer, WE# buffer, OE# buffer, and I/O buffer. If CS# controls data retention mode, Vin levels (address, WE#, OE#, I/O) can be in the high-impedance state.

Revision History

RMLV0408E Series Data Sheet

		Description						
Rev.	Date	Page	Summary					
1.00	2014.2.27	_	First edition issued					
2.00	2016.1.12	1	Changed section from "Part Name Information" to "Orderable part number information"					
2.01	2020.2.20	Last page	Updated the Notice to the latest version					

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/