

RL78/L1A R01DS0280EJ0110

RENESAS MCU

Rev.1.10 Sep 30, 2019

Integrated LCD controller/driver, 12-bit resolution A/D Converter, 12-bit resolution D/A Converter, Operational amplifier, Internal reference voltage for A/D and D/A converters. True Low Power Platform (as low as 70.8 μ A/MHz, and 0.68 μ A in Halt mode(RTC2 + LVD)), 1.8 V to 3.6 V operation, 48 to 128 Kbyte Flash, 33 DMIPS at 24 MHz, for All LCD Based Applications.

1. OUTLINE

1.1 Features

- O Ultra-low power consumption technology
 - VDD = single power supply voltage of 1.8 to 3.6 V
 - · HALT mode
 - STOP mode
 - SNOOZE mode

○ RL78 CPU core

- · CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with high-speed on-chip oscillator clock) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide and multiply/accumulate instructions are supported.
- · Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- · On-chip RAM: 5.5 KB
- Code flash memory
 - · Code flash memory: 48 to 128 KB
 - · Block size: 1 KB
 - Prohibition of block erase and rewriting (security function)
 - · On-chip debug function
 - Self-programming (with boot swap function/flash shield window function)
- O Data flash memory
 - · Data flash memory: 8 KB
 - Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
 - Number of rewrites: 1,000,000 times (TYP.)
 - Voltage of rewrites: VDD = 1.8 to 3.6 V

- O High-speed on-chip oscillator
 - Select from 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
 - High accuracy: ±1.0% (VDD = 1.8 to 3.6 V, TA = -20 to +85°C)
- Operating ambient temperature
 - TA = -40 to +85°C (A: Consumer applications)
- O Power management and reset function
 - · On-chip power-on-reset (POR) circuit
 - On-chip voltage detector (LVD) (Select interrupt and reset from 10 levels)
- O Data transfer controller (DTC)
 - Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
 - Activation sources: Activated by interrupt sources (30 sources).
 - · Chain transfer function
- O Event link controller (ELC)
 - Event signals of 22 types can be linked to the specified peripheral function.
- O Serial interfaces
 - CSI/CSI (SPI supported): 4 channels
 UART: 4 channels
 I²C/simplified I²C: 5 channels
- Timers
 - 16-bit timer: 8 channels
 8-bit timer: 2 channels
 12-bit interval timer: 1 channel
 - Real-time clock 2: 1 channel (calendar for

99 years, alarm function, and clock correction

function)

Watchdog timer: 1 channel (operable

with the dedicated lowspeed on-chip oscillator)

O LCD controller/driver

- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.
- Segment signal output: 32 (28) to 45 (41) Note 1
- · Common signal output: 4 (8) Note 1

O A/D converter

- 12-bit resolution A/D converter (1.8 V ≤ AVDD ≤ VDD ≤ 3.6 V)
- Analog input: 10 to 15 channels (including a dedicated one for internal 1/2 AVDD)
- Internal reference voltage (TYP. 1.45 V) and temperature sensor Note 2

O D/A converter

- 12-bit resolution D/A converter (1.8 V ≤ AVDD ≤ VDD ≤ 3.6 V)
- · Analog output: 2 channels
- Output voltage: 0.35 V to AVDD 0.47 V

O Voltage reference

- The output voltage can be selected from among 1.5 V (typ.), 1.8 V (typ.), 2.048 V (typ.), and 2.5 V (typ.).
- Can be used as the internal reference voltage for A/D and D/A converters.

○ Comparator

- 1 channel
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode
- The external reference voltage or internal reference voltage can be selected as the reference voltage.

Operational amplifier

- · General-purpose operational amplifier: 1 channel
- Rail-to-rail operational amplifier with analog MUX:
 2 channels

O I/O ports

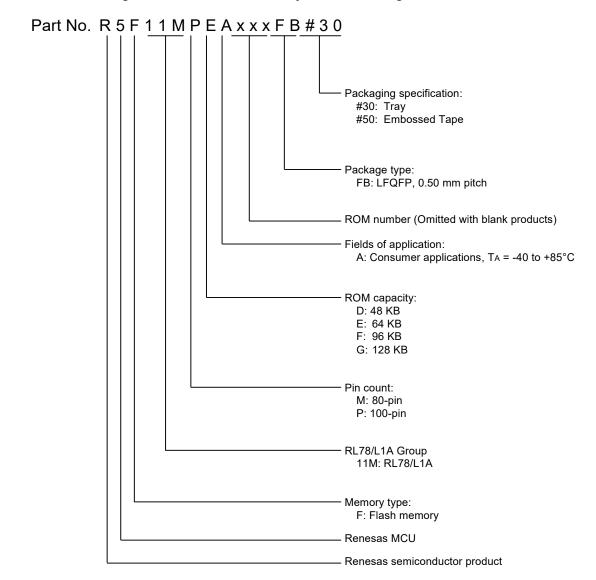
- I/O ports: 59 to 79 (N-ch open drain I/O [withstand voltage of 6 V]: 2)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- · On-chip key interrupt function
- · On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit
 - Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.
 - **Note 2.** Selectable only in HS (high-speed main) mode.

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

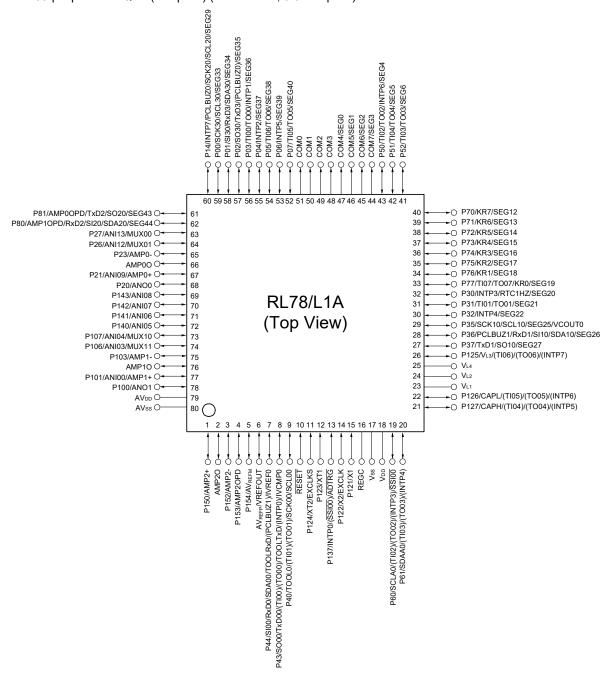
O ROM, RAM capacities


Flash ROM	Data Flash	RAM	RL78/L1A			
Flasii NOW	Data Flasii	IVAIVI	80 pins	100 pins		
128 KB	8 KB	5.5 KB	_	R5F11MPG		
96 KB	8 KB	5.5 KB	R5F11MMF	R5F11MPF		
64 KB	8 KB	5.5 KB	R5F11MME	R5F11MPE		
48 KB	8 KB	5.5 KB	R5F11MMD	_		

1.2 Ordering Information

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	А	R5F11MMDAFB#30, R5F11MMEAFB#30, R5F111MFAFB#30 R5F11MMDAFB#50, R5F11MMEAFB#50, R5F11MMFAFB#50
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	А	R5F11MPEAFB#30, R5F11MPFAFB#30, R5F11MPGAFB#30 R5F11MPEAFB#50, R5F11MPFAFB#50, R5F11MPGAFB#50

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/L1A

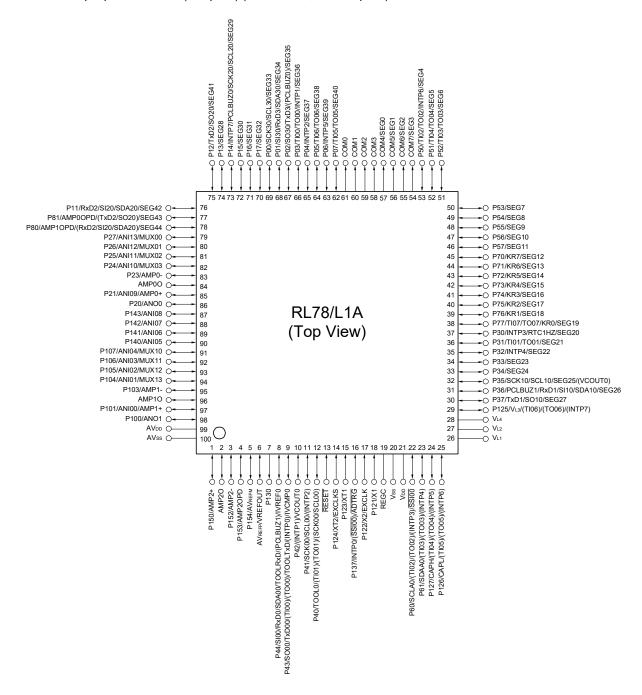

Caution Orderable part numbers are current as of when this manual was published.

Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

1.3 Pin Configuration (Top View)

1.3.1 80-pin products

• 80-pin plastic LFQFP (fine pitch) (12 \times 12 mm, 0.5 mm pitch)


Caution Connect the REGC pin to VSS pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.2 100-pin products

• 100-pin plastic LFQFP (fine pitch) (14 × 14 mm, 0.5 mm pitch)

Caution Connect the REGC pin to VSS pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

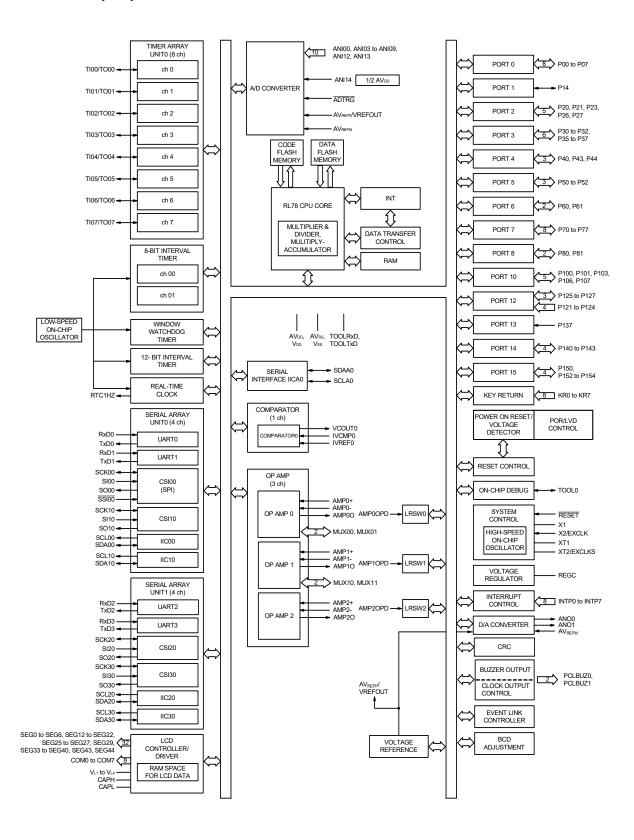
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

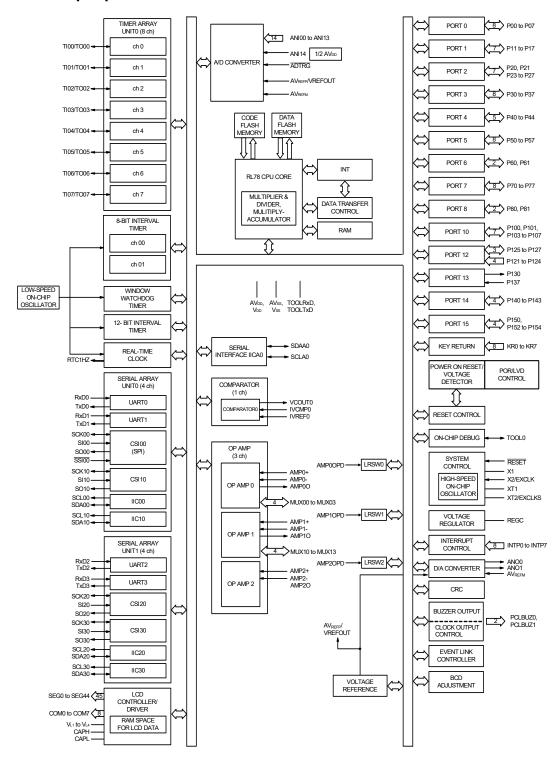
<R>

AMP0+ to AMP2+ : OP AMP + Input PCLBUZ0, PCLBUZ1 : Programmable Clock Output/ AMP0- to AMP2-: OP AMP - Input **Buzzer Output** REGC AMP00 to AMP20 : OP AMP Output : Regulator Capacitance AMP0OPD to : Low Resistance Switch RESET : Reset : Real-time Clock Correction AMP2OPD RTC1HZ **ADTRG** : A/D External Trigger Input RxD0 to RxD3 : Receive Data ANI00 to ANI13 : Analog Input SCK00, SCK10, SCK20, : Serial Clock Input/Output ANO0, ANO1 SCK30 : Analog Output **AVDD** : Analog Power Supply SCLA0 : Serial Clock Input/Output **AVREFM** : Analog Reference Voltage SCL00, SCL10, SCL20, SCL30 : Serial Clock Output SDAA0, SDA00, SDA10, : Serial Data Input/Output Minus **AVREFP** : Analog Reference Voltage SDA20, SDA30 Plus SEG0 to SEG44 : LCD Segment Output **AVSS** SI00, SI10, SI20, SI30 : Analog Ground : Serial Data Input CAPH, CAPL : Capacitor for LCD SO00, SO10, SO20, SO30 : Serial Data Output COM0 to COM7 : LCD Common Output SSI00 : Slave Select Input **EXCLK** : External Clock Input TI00 to TI07 : Timer Input (Main System Clock) TO00 to TO07 : Timer Output **EXCLKS** : External Clock Input TOOL0 : Data Input/Output for Tool (Sub System Clock) TOOLRXD, TOOLTXD : Data Input/Output for INTP0 to INTP7 : External Interrupt Input **External Device** IVCMP0 : Comparator Input TxD0 to TxD3 : Transmit Data IVREF0 : Comparator Reference Input VCOUT0 : Comparator Output KR0 to KR7 : Key Return VDD : Power Supply MUX00 to MUX03, : OP AMP output analog MUX VL1 to VL4 : LCD Power Supply MUX10 to MUX13 **VREFOUT** : Analog Reference Voltage switch P00 to P07 : Port 0 Output P11 to P17 Vss : Port 1 : Ground P20, P21 P23 to P27 X1, X2 : Crystal Oscillator : Port 2 P30 to P37 : Port 3 (Main System Clock) P40 to P44 : Port 4 XT1, XT2 : Crystal Oscillator P50 to P57 (Subsystem Clock) : Port 5 P60, P61 : Port 6 P70 to P77 : Port 7 P80, P81 : Port 8 P100, P101 : Port 10 P103 to P107 P121 to P127 : Port 12 P130, P137 : Port 13

P140 to P143


P150, P152 to P154

· Port 14


: Port 15

1.5 Block Diagram

<R> 1.5.1 80-pin products

<R> 1.5.2 100-pin products

1.6 Outline of Functions

[80-pin, 100-pin products]

(1/2)

	Item	80-pin	100-pin		
	item	R5F11MMx (x = D to F)	R5F11MPx ($x = E \text{ to } G$)		
Code flash memory	(KB)	48 to 96	64 to 128		
Data flash memory (KB)	8	8		
RAM (KB)		5.5	5.5		
Memory space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main syst 1 to 20 MHz: VDD = 2.7 to 3.6 V, 1 to 8 MHz: VI			
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MH HS (high-speed main) operation mode: 1 to 16 MH LS (low-speed main) operation mode: 1 to 8 MHz	Hz (VDD = 2.4 to 3.6 V),		
Subsystem clock	•	XT1 (crystal) oscillation, external subsystem clock 32.768 kHz (TYP.): VDD = 1.8 to 3.6 V	input (EXCLKS)		
Low-speed on-chip of	escillator clock	15 kHz (TYP.): VDD = 1.8 to 3.6 V			
General-purpose reg	jister	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks	s)		
Minimum instruction	execution time	0.04167 μs (High-speed on-chip oscillator clock: fHOCO = fIH = 24 MHz operation)			
		0.05 μs (High-speed system clock: fMX = 20 MHz operation)			
		30.5 μs (Subsystem clock: fSUB = 32.768 kHz operation)			
Instruction set		Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits Multiplication (8 bits × 8 bits, 16 bits × 16 bits), E Multiplication and Accumulation (16 bits × 16 bits). Rotate, barrel shift, and bit manipulation (Set, re	pivision (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) s + 32 bits)		
I/O port	Total	59	79		
	CMOS I/O	52	71		
	CMOS input	5	5		
	CMOS output	0	1		
	N-ch open-drain I/O (6 V tolerance)	2	2		
Timer	16-bit timer TAU	8 channels (Timer outputs: 8, PWM outputs: 7 Note	*)		
	8-bit or 16-bit interval timer	2 channels (8 bits) / 1 channel (16 bits)			
	Watchdog timer	1 channel			
	12-bit interval timer	1 channel			
	Real-time clock 2	1 channel			
	RTC output	1 1 Hz (subsystem clock: fSUB = 32.768 kHz)			
		1 ' '			

Note The number of outputs varies, depending on the setting of channels in use and the number of the master.

(2/2)

			(2/2)			
	Itom	80-pin	100-pin			
	Item	R5F11MMx (x = D to F)	R5F11MPx (x = E to G)			
Clock output/bu	ızzer output	2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMAIN = 20 MHz operation 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fSUB = 32.768 kHz operation) 	n) kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz			
12-bit resolution	n A/D converter	10 channels	14 channels			
12-bit resolution	n D/A converter	2 channels	2 channels			
VREFOUT (vol	tage reference)	2.5 V/2.048 V	V/1.8 V/1.5 V			
Operational am	plifier	3 channels	3 channels			
AMF	PnO with analog MUX switch	2 channels (2 in-out/channel)	2 channels (4 in-out/channel)			
Comparator		1 channel	1 channel			
Serial interface		CSI (SPI supported): 1 channel/UART (LIN-bus CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	: 1 channel : 1 channel			
	I ² C bus	1 channel	1 channel			
LCD controller/o	driver	Internal voltage boosting method, capacitor split are switchable.	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.			
Segi	ment signal output	32 (28) Note 1	45 (41) Note 1			
Com	nmon signal output	4 (8) Note 1				
Data transfer co	ontroller (DTC)	30 sources	30 sources			
Event link contr	roller (ELC)	Event input: 22, Event trigger output: 8	Event input: 22, Event trigger output: 8			
Vectored interru	upt Internal	31	31			
sources	External	9	9			
Key interrupt		8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution No Internal reset by RAM parity error Internal reset by illegal-memory access	Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note 2 Internal reset by RAM parity error			
Power-on-reset	circuit	Power-on-reset: 1.51 ±0.04 V Power-down-reset: 1.50 ±0.04 V	• Power-on-reset: 1.51 ±0.04 V			
Voltage detecto	ır	Rising edge: 1.88 V to 3.13 V (10 stages) Falling edge: 1.84 V to 3.06 V (10 stages)	0 0 ,			
On-chip debug	function	Provided				
Power supply v	oltage	VDD = 1.8 to 3.6 V				
Operating ambi	ient temperature	TA = -40 to +85°C (A: Consumer applications)				

- Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.
- Note 2. The illegal instruction is generated when instruction code FFH is executed.

 Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (A: TA = -40 to +85°C)

This chapter describes the following electrical specifications.

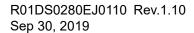
Target products A: Consumer applications (TA = -40 to +85°C)

R5F11MxxAFB

- Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1A User's Manual.

<R>

2.1 Absolute Maximum Ratings


Absolute Maximum Ratings (TA = 25°C)

(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	AVDD	$AVDD \leq VDD$	-0.5 to +4.6	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} + 0.3 Note 1	
Input voltage	VI1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P121 to P127, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 Note 2	V
	VI2	P60, P61 (N-ch open-drain)	-0.3 to +6.5	V
	VI4	IVCMP0	-0.7 to VDD + 0.7	V
	VI5	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	-0.3 to AVDD + 0.3 Note 3	V
Output voltage	Vo1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P130	-0.3 to VDD + 0.3 Note 2	V
	VO2	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	-0.3 to AVDD + 0.3 Note 3	V
Analog input voltage	VAI2	ANI00 to ANI13	-0.3 to AVDD + 0.3 and AVREF(+) + 0.3 Notes 2, 4	V

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- Note 2. Must be 6.5 V or lower.
- Note 3. Must be 4.6 V or lower.
- **Note 4.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

 That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- **Remark 2.** AVREF (+): Positive reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(2/3)

Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	V _{L1} input voltage ^N	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage N	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage N	Note 1	-0.3 to +6.5	V
	VLI4	V _L 4 input voltage ^N	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH input voltage Note 1 -0.3 to +6.5			
	VLO1	V _L 1 output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	VL4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VL06 COM0 to COM7 SEG0 to SEG44		External resistance division method	-0.3 to VDD + 0.3 Note 2	V
			Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
		output voltage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

- Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor $(0.47 \pm 30\%)$ and connect a capacitor $(0.47 \pm 30\%)$ between the CAPL and CAPH pins.
- Note 2. Must be 6.5 V or lower.

Caution

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

<R>

<R>

<R>

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin		-40	mA
		Total of all	P40 to P44, P130	-70	mA
		pins -170 mA	P00 to P07, P11 to P17, P30 to P37, P50 to P57, P70 to P77, P80, P81, P125 to P127	-100	mA
	ІОН2	Per pin	P20, P21, P23 to P27, P100, P101, P103 to P107,	-0.1	mA
		Total of all pins	P140 to P143, P150, P152 to P154	-1.6 ^{Note}	mA
Output current, low	IOL1	Per pin		40	mA
		Total of all	P40 to P44, P130	70	mA
		pins 170 mA	P00 to P07, P11 to P17, P30 to P37, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127	100	mA
	IOL2	Per pin	P20, P21, P23 to P27, P100, P101, P103 to P107,	0.4	mA
		Total of all pins	P140 to P143, P150, P152 to P154	6.4 Note	mA
Operating ambient	TA	In normal c	peration mode	-40 to +85	°C
temperature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Note Do not exceed the rated value of current even in simultaneous output from the maximum of 16 AVDD-group pins.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)	Ceramic resonator/crystal resonator	$2.7~\text{V} \leq \text{Vdd} \leq 3.6~\text{V}$	1.0		20.0	MHz
Note		2.4 V ≤ VDD < 2.7 V	1.0		16.0	
		1.8 V ≤ VDD < 2.4 V	1.0		8.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1A User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Oscillators	Symbol		MIN.	TYP.	MAX.	Unit	
High-speed on-chip oscillator clock	fHOCO	2.7 V ≤ VDD ≤ 3.6 V				24	MHz
frequency Notes 1, 2		$2.4~V \leq VDD \leq 3.6~V$		1		16	MHz
		1.8 V ≤ VDD ≤ 3.6 V		1		8	MHz
High-speed on-chip oscillator clock		-20 to +85°C	$1.8~V \leq V_{DD} \leq 3.6~V$	-1.0		+1.0	%
frequency accuracy		-40 to -20°C	$1.8~V \leq V \text{DD} \leq 3.6~V$	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fIL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

<R> 2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVSS = VSS = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130				-10.0 Note 2	mA
		Total of P00 to P07, P11 to P17,	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$			-15.0	mA
		P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130 (When duty = 70% Note 3)	1.8 V ≤ VDD < 2.7 V			-7.0	mA
	IOH2	Per pin for P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	1.8 V ≤ VDD ≤ 3.6 V			-0.1 Note 2	mA
		Total of P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154 (When duty = 70% Note 3)	$1.8~\textrm{V}~\leq\textrm{VDD}~\leq3.6~\textrm{V}$			-1.6	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin (IOH1) and AVDD pin (IOH2) to an output pin.
- Note 2. However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
- <Example> Where n = 50% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(50 \times 0.01)$ = -14.0 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00 to P02, P11, P12, P14, P35 to P37, P40, P41, P43, P44, P80, and P81 do not output high level in N-ch opendrain mode.

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVSS = VSS = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130				20.0 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
	Total of P40 to P44, P130 (When duty = 70% Note 3)	$2.7~V \leq V_{DD} \leq 3.6~V$			15.0	mA	
		(When duty = 70% Note 3)	1.8 V ≤ VDD < 2.7 V			9.0	mA
	Total of P00 to P07, P11 to P17,	$2.7~V \leq V_{DD} \leq 3.6~V$			35.0	mA	
		P30 to P37, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127 (When duty = 70% Note 3)	1.8 V ≤ VDD < 2.7 V			20.0	mA
		Total of all pins (When duty = 70% Note 3)				50.0	mA
	IOL2	Per pin for P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	1.8 V ≤ VDD ≤ 3.6 V			0.4 Note 2	mA
		Total of P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154 (When duty = 70% Note 3)	1.8 V ≤ VDD ≤ 3.6 V			6.4	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin (IOL1) and AVss pin (IOL2).
- Note 2. However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL \times 0.7)/(n \times 0.01)

<Example> Where n = 50% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(50 \times 0.01)$ = 14.0 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVss = Vss = 0 V)

Items Symbol Conditions MIN. TYP. MAX. Unit Input voltage, high VIH1 Normal input buffer 0.8 VDD VDD Port P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P81, P125 to P127 VIH2 P00, P01, P11, P14, P35, P36, P40, TTL input buffer 2.0 VDD ٧ P41, P44, P80 $3.3 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ TTL input buffer 1.50 VDD V $1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}$ VIH3 P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to 0.7 AVDD AVDD ٧ P143, P150, P152 to P154 VIH4 P60, P61 0.7 VDD 6.0 ٧ VIH5 0.8 VDD VDD ٧ P121 to P124, P137, EXCLK, EXCLKS, RESET Input voltage, low VIL1 Port P00 to P07. P11 to P17. P30 to Normal input buffer 0 0.2 VDD ٧ P37, P40 to P44, P50 to P57, P70 to P77, P80 to P81, P125 to P127 VIL2 P00, P01, P11, P14, P35, P36, P40, TTL input buffer 0 0.5 ٧ P41, P44, P80 $3.3~V \leq V_{DD} \leq 3.6~V$ 0.32 V TTL input buffer 0 $1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}$ VIL3 P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to 0 0.3 AVDD ٧ P143, P150, P152 to P154 VIL4 P60, P61 0 0.3 VDD ٧ VIL5 0 0.2 VDD ٧ P121 to P124, P137, EXCLK, EXCLKS, RESET

Caution The maximum value of VIH of pins P00 to P02, P11, P12, P14, P35 to P37, P40, P41. P43, P44, P80, and P81 is VDD, even in the N-ch open-drain mode.

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVSS = VSS = 0 V)

Items Symbol Conditions MIN. TYP. MAX. Unit P00 to P07, P11 to P17, P30 to P37, Output voltage, high Vo_{H1} $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ **VDD - 0.6** P40 to P44, P50 to P57, P70 to P77, IOH = -2.0 mAP80, P81, P125 to P127, P130 $1.8 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V},$ **VDD - 0.5** ٧ IOH = -1.5 mAVOH2 P20, P21, P23 to P27, P100, P101, $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ V AVDD -P103 to P107, P140 to P143, P150, $IOH = -100 \mu A$ 0.5 P152 to P154 VOL1 P00 to P07, P11 to P17, P30 to P37, $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ 0.6 ٧ Output voltage, low P40 to P44, P50 to P57, P70 to P77, IOL = 3.0 mAP80, P81, P125 to P127, P130 $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}.$ 0.4 ٧ IOL = 1.5 mA $1.8 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V},$ 0.4 V IOL = 0.6 mAVOL2 P20, P21, P23 to P27, P100, P101, $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ 0.4 P103 to P107, P140 to P143, P150, $IOL = 400 \mu A$ P152 to P154 P60, P61 $2.7~V \leq V_{DD} \leq 3.6~V,$ Vol3 0.4 ٧ IOL = 3.0 mA $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ 0.4 ٧ IOL = 2.0 mA

Caution P00 to P02, P11, P12, P14, P35 to P37, P40, P41. P43, P44, P80, and P81 do not output high level in N-ch open-drain mode.

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVss = Vss = 0 V)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P137, RESET	Vi = VDD				1	μА
	ILIH3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μА
				In resonator connection			10	μА
	ILIH4	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	VI = AVDI	0			1	μА
Input leakage current, low	ILIL1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P137, RESET	VI = Vss				-1	μА
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μА
				In resonator connection			-10	μА
	ILIL4	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	VI = AVSS	6			-1	μА
On-chip pull-up resistance	Ru1	P00 to P07, P11 to P17, P30 to P37, P50 to P57, P70 to P77, P80, P81, P125 to P127	VI = VSS	$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ $1.8 \text{ V} \le \text{VDD} \le 2.4 \text{ V}$	10	20 30	100	kΩ
	Ru2	P40 to P44	Vı = Vss		10	20	100	kΩ

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, Vss = 0 V)

(1/2)

Parameter	Symbol		Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating	HS	fih = 24 MHz Note 3	Basic	VDD = 3.6 V		1.7		mA
		mode	(high-speed main)		operation	V _{DD} = 3.0 V		1.7		
			mode Note 5		Normal	VDD = 3.6 V		3.6	6.1	
					operation	V _{DD} = 3.0 V		3.6	6.1	,
				fih = 16 MHz Note 3	Normal	VDD = 3.6 V		2.7	4.7	
					operation	VDD = 3.0 V		2.7	4.7	•
			LS	fiH = 8 MHz Note 3	Normal	VDD = 3.6 V		1.2	2.1	mA
			(low-speed main) mode Note 5		operation	VDD = 3.0 V		1.2	2.1	·
			HS	fmx = 20 MHz Note 2,	Normal	Square wave input		3.0	5.1	mA
			(high-speed main)	VDD = 3.6 V	operation	Resonator connection		3.2	5.2	,
			mode Note 5	fmx = 20 MHz Note 2, VDD = 3.0 V	Normal operation	Square wave input		2.9	5.1	-
						Resonator connection		3.2	5.2	
				fmx = 16 MHz Note 2, VDD = 3.6 V	Normal operation	Square wave input		2.5	4.4	
						Resonator connection		2.7	4.5	
				fmx = 16 MHz Note 2, VDD = 3.0 V	Normal operation	Square wave input		2.5	4.4	
						Resonator connection		2.7	4.5	
				fmx = 10 MHz Note 2, VDD = 3.6 V	Normal operation	Square wave input		1.9	3.0	
						Resonator connection		1.9	3.0	,
				fmx = 10 MHz Note 2, VDD = 3.0 V	Normal operation	Square wave input		1.9	3.0	1
						Resonator connection		1.9	3.0	•
			LS (low-speed main) mode Note 5	fmx = 8 MHz Note 2, VDD = 3.6 V	Normal operation	Square wave input		1.1	2.0	mA
						Resonator connection		1.1	2.0	
				fmx = 8 MHz Note 2,	Normal	Square wave input		1.1	2.0	
				VDD = 3.0 V	operation	Resonator connection		1.1	2.0	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.0	5.4	μА
			operation	TA = -40°C	operation	Resonator connection		4.3	5.4	
				fsuB = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.0	5.4	
				TA = +25°C	operation	Resonator connection		4.3	5.4	,
				fsuB = 32.768 kHzNote 4	Normal	Square wave input		4.1	7.1	
				TA = +50°C	operation	Resonator connection		4.4	7.1	,
				fsuB = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.3	8.7	
				TA = +70°C	operation	Resonator connection		4.7	8.7	
				fsuB = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.7	12.0	
				TA = +85°C	operation	Resonator connection		5.2	12.0	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, rail to rail operational amplifier (with analog multiplexer), general-purpose operational amplifier, voltage reference, low-resistance switch, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, 8-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V@1 MHz}$ to 24 MHz

 $2.4~V \leq V \text{DD} \leq 3.6~V \textcircled{@} 1~MHz$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V@1 MHz}$ to 8 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fil: Frequency when the high-speed on-chip oscillator (24 MHz max.)
- Remark 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, Vss = 0 V)

(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fiH = 24 MHz Note 4	VDD = 3.6 V		0.42	1.83 m	mA
current Note 2 Note 1	Note 2		mode Note 7		VDD = 3.0 V		0.42	1.83	
				fih = 16 MHz Note 4	VDD = 5.0 V		0.39	1.38	ľ
					VDD = 3.0 V		0.39	1.38	
			LS (low-speed main)	fiH = 8 MHz Note 4	VDD = 3.0 V		0.25	0.71	mA
			mode Note 7		VDD = 2.0 V		0.25	0.71	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.26	1.55	mA
			mode Note 7	VDD = 3.6 V	Resonator connection		0.4	1.68	
				fmx = 20 MHz Note 3,	Square wave input		0.25	1.55	
				VDD = 3.0 V	Resonator connection		0.4	1.68	
				fmx = 16 MHz Note 3,	Square wave input		0.23	1.22	ľ
				VDD = 3.6 V	Resonator connection		0.36	1.39	
				fmx = 16 MHz Note 3, VDD = 3.0 V	Square wave input		0.22	1.22	
					Resonator connection		0.35	1.39	
				fmx = 10 MHz Note 3, VDD = 3.0 V	Square wave input		0.18	0.82	ľ
					Resonator connection		0.28	0.90	
				fmx = 10 MHz Note 3, VDD = 2.0 V	Square wave input		0.18	0.81	ľ
					Resonator connection		0.28	0.89	
			LS (low-speed main) mode Note 7	fmx = 8 MHz Note 3, VDD = 3.0 V	Square wave input		0.09	0.51	mA
					Resonator connection		0.15	0.56	
				fmx = 8 MHz Note 3, VDD = 2.0 V	Square wave input		0.10	0.52	ľ
					Resonator connection		0.15	0.57	
			Subsystem clock operation	fsuB = 32.768 kHz Note 5	Square wave input		0.32	0.75	μА
				TA = -40°C fsuB = 32.768 kHz Note 5 TA = +25°C	Resonator connection		0.51	0.83	
					Square wave input		0.41	0.83	
					Resonator connection		0.62	1.00	
				fsub = 32.768 kHz Note 5	Square wave input		0.52	1.17	
				TA = +50°C	Resonator connection		0.75	1.36	
				fsuB = 32.768 kHz Note 5	Square wave input		0.82	1.97	
				TA = +70°C	Resonator connection		1.08	2.16	
				fsub = 32.768 kHz Note 5	Square wave input		1.38	3.37	
				TA = +85°C	Resonator connection		1.62	3.56	
	IDD3	STOP mode Note 8	T _A = -40°C				0.16	0.51	μА
	Note 6		T _A = +25°C				0.22	0.51	•
			T _A = +50°C				0.27	1.10	
			T _A = +70°C				0.37	1.90	1
			T _A = +85°C				0.6	3.30	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, ail to rail operational amplifier (with analog multiplexer), general-purpose operational amplifier, voltage reference, low-resistance switch, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer, 8-bit interval timer, and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, 8-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V} @1 \text{ MHz}$ to 24 MHz

 $2.4~V \leq V \text{DD} \leq 3.6~V \textcircled{@} 1~MHz$ to 16~MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V@1 MHz}$ to 8 MHz

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fil: Frequency when the high-speed on-chip oscillator (24 MHz max.)
- Remark 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		μА
RTC2 operating current	IRTC Notes 1, 3	fsub = 32.768 kHz			0.02		μА
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsub = 32.768 kHz		0.02		μА	
8-bit interval timer operating current	ITMRT Notes 1, 19	fsub = 32.768 kHz	8-bit counter mode × 2-channel operation 16-bit counter mode operation		0.12		μΑ
Watchdog timer operating current	IWDT Notes 1, 5	fiL = 15 kHz		0.10		μΑ μΑ	
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, when	AVDD = 3.0 V, when conversion at maximum speed				mA
A/D converter	IAVREF	AVDD = 3.0 V, HVS	EL[1:0] = 00B Note 7		40	80	μΑ
AVREF(+) current	Note 8	AVDD = 3.0 V, HVS	SEL[1:0] = 01B Note 10		40	80	
Internal reference voltage (1.45 V) current	IADREF Notes 1, 9				85		μА
Temperature sensor operating current	ITMPS Note 1				85		μА
D/A converter operating current	IDAC Notes 7, 11	Per D/A converter		0.4	0.8	mA	
D/A converter AVREF(+) current	IDAREF Note 10	AVREFP = 3.0 V, RI		35	80	μА	
Comparator	ICMP	VDD = 3.6 V,	Window mode		7.0		μА
operating current	Notes 1, 12	Regulator output voltage = 2.1 V	Comparator high-speed mode		2.6		μА
		g	Comparator low-speed mode		1.2		μΑ
		VDD = 3.6 V,	Window mode		4.1		μА
		Regulator output voltage = 1.8 V	Comparator high-speed mode		1.5		μА
			Comparator low-speed mode		0.9		μΑ
General-purpose	IAMP1	AVDD = 3.0 V	Low-power consumption mode		2	4	μΑ
operational amplifier operating current (for 1 unit)	Notes 7, 18		High-speed mode		140	280	μА
Rail to rail	IAMP2	AVDD = 3.0 V	Low-power consumption mode		10	16	μΑ
operational amplifier operating current (for 1 unit)	Notes 7, 18		High-speed mode		210	350	μА
LVD operating current	ILVI Notes 1, 13				0.06		μА
Self-programming operating current	IFSP Notes 1, 14				2.0	12.2	mA
BGO operating current	IBGO Notes 1, 15				2.0	12.2	mA
SNOOZE operating current	ISNOZ Note 1	CSI/UART operation	on		0.70	0.84	mA
Voltage reference operating current	IVREF	AVDD = VDD = 3.0	V			40	μΑ

(TA = -40 to +85°C, 1.8 V $\,\leq$ AVDD \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol		Conditions					MAX.	Unit
LCD operating current	ILCD1 Notes 16, 17	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, VL4 = 3.6 V		0.14		μА
	ILCD2 Note 16	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	V _{DD} = 3.0 V, V _{L4} = 3.0 V (V _{LCD} = 04H)		0.61		μА
	ILCD3 Note 16	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, VL4 = 3.0 V		0.12		μА

(Notes and Remarks are listed on the next page.)

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- **Note 9.** Operation current flowing to the internal reference voltage.
- Note 10. Current flowing to the AVREFP.
- **Note 11.** Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- Note 16. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- **Note 17.** Not including the current that flows through the external divider resistor divider resistor.
- Note 18. Current flowing only to the operational amplifier. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IAMP when the operational amplifier operates in the operating mode, HALT mode, or STOP mode.
- Note 19. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

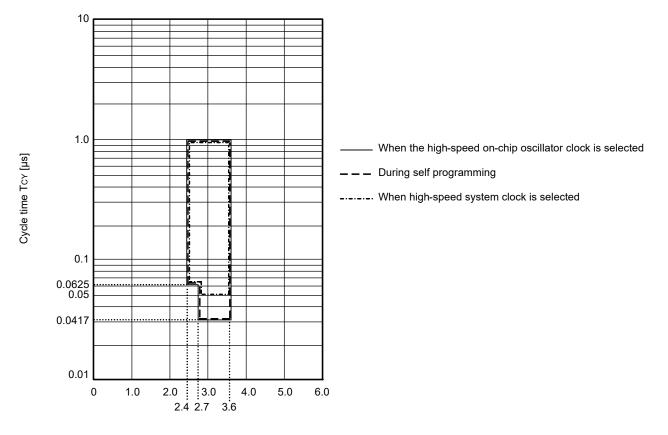
2.4 AC Characteristics

2.4.1 Basic operation

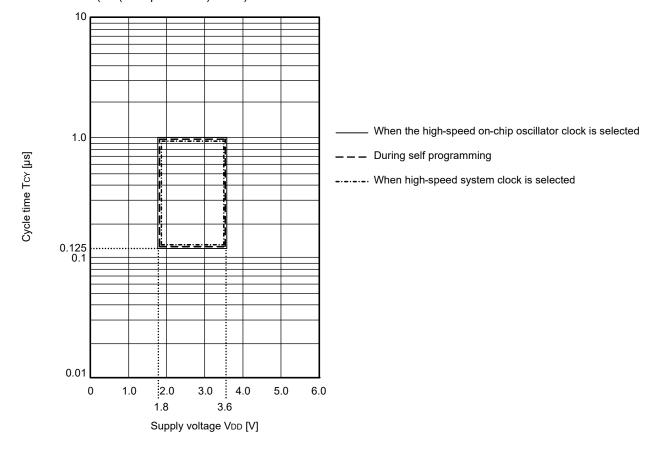
(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle	Tcy	Main system	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 3.6~V$	0.0417		1	μS
(minimum instruction		clock (fMAIN)	mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μS
execution time)		operation	LS (low-speed main) mode	$1.8~V \leq V \text{DD} \leq 3.6~V$	0.125		1	μS
		Subsystem clo	ock (fsub) operation	$1.8~V \leq VDD \leq 3.6~V$	28.5	30.5	31.3	μS
		In the self-	HS (high-speed main)	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$	0.0417		1	μS
		programming	mode	$2.4 \text{ V} \le \text{VDD} \le 2.7 \text{ V}$	0.0625		1	μS
		mode	LS (low-speed main) mode	$1.8~V \leq V \text{DD} \leq 3.6~V$	0.125		1	μs
External main system	fEX	EXCLK	l	$2.7~V \leq V \text{DD} \leq 3.6~V$	1.0		20.0	MHz
clock frequency				2.4 V ≤ VDD < 2.7 V	1.0		16.0	MHz
				1.8 V ≤ VDD < 2.7 V	1.0		8.0	MHz
	fEXT	EXCLKS			32		35	kHz
External main system	texH,	EXCLK		$2.7~V \leq V \text{DD} \leq 3.6~V$	24			ns
clock input high-level	texL			2.4 V ≤ VDD < 2.7 V	30			ns
width, low-level width				1.8 V ≤ VDD < 2.7 V	60			ns
	texhs,	EXCLKS			13.7			μS
Timer input high-level width, low-level width	tтін, tтіL	TI00 to TI07			1/fмск + 10			ns
Timer output			HS (high-speed main)	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$			8	MHz
frequency		TO07	mode	2.4 V ≤ VDD < 2.7 V			8	MHz
			LS (low-speed main) mode	$1.8~V \leq V \text{DD} \leq 3.6~V$			4	MHz
Buzzer output	fPCL	PCLBUZ0,	HS (high-speed main)	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$			8	MHz
frequency		PCLBUZ1	mode	2.4 V ≤ VDD < 2.7 V			8	MHz
			LS (low-speed main) mode	$1.8~V \leq VDD \leq 3.6~V$			4	MHz
Interrupt input high- level width, low-level width	tINTH, tINTL	INTP0 to INTP7		1.8 V ≤ VDD ≤ 3.6 V	1			μS
Key interrupt input low-level width	tkr	KR0 to KR7		$1.8~V \leq V \text{DD} \leq 3.6~V$	250			ns
RESET low-level width	trsl	RESET			10			μS

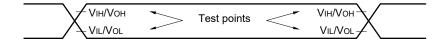
Remark fMCK: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0),

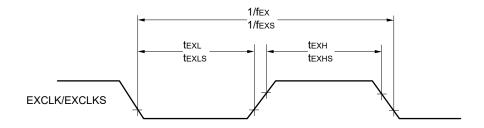
n: Channel number (n = 0 to 7))

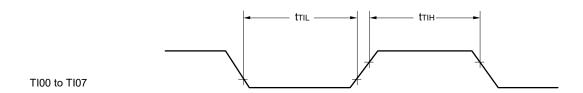

Minimum Instruction Execution Time during Main System Clock Operation

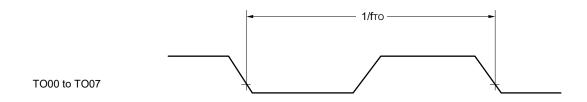
Tcy vs VDD (HS (high-speed main) mode)



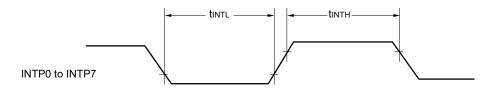
Supply voltage VDD [V]


Tcy vs Vdd (LS (low-speed main) mode)

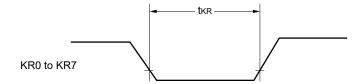

AC Timing Test Points

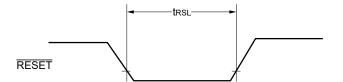


External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

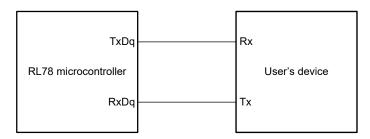
Doromotor	Symbol	Conditions	HS (high-s	peed main) Mode	LS (low-sp	Unit	
Parameter Symbol		Conditions	MIN.	MAX.	MIN.	MAX.	Offic
Transfer		$2.7~\text{V} \leq \text{Vdd} \leq 3.6~\text{V}$		fMCK/6 Note 2		fмск/6	bps
rate ^{Note 1}		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3	Mbps
		$2.4~V \leq V \text{DD} \leq 3.6~V$		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6		1.3	Mbps
		1.8 V ≤ VDD ≤ 3.6 V		_		fMCK/6 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

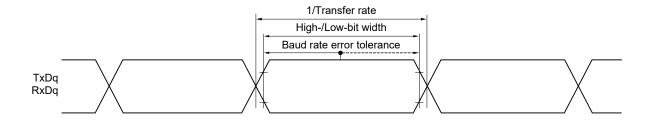
Note 2. The following conditions are required for low voltage interface.

 $2.4~V \le VDD \le 2.7~V$: MAX. 2.6~Mbps $1.8~V \le VDD \le 2.4~V$: MAX. 1.3~Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V \leq VDD \leq 3.6 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter	Symbol Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/2	$2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}$	167		250		ns
SCKp high-/low-level width	tKH1, tKL1	2.7 V ≤ VDD ≤ 3	2.7 V ≤ VDD ≤ 3.6 V			tKCY1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsik1	2.7 V ≤ VDD ≤ 3	.6 V	33		110		ns
SIp hold time (from SCKp↑) Note 2	tKSI1	2.7 V ≤ VDD ≤ 3	$2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}$			10		ns
Delay time from SCKp↓ to SOp output Note 3	tKSO1	C = 20 pF Note 4			10		10	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 4)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

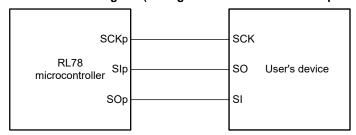
<R>

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter	Symbol		Conditions	HS (high-spee Mode	d main)	LS (low-speed Mode	d main)	Unit				
				MIN.	MAX.	MIN.	MAX.					
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/4	$2.7~V \leq V_{DD} \leq 3.6~V$	167		500		ns				
			$2.4~V \leq V \text{DD} \leq 3.6~V$	250		500		ns				
			$1.8~V \leq VDD \leq 3.6~V$	_		500		ns				
SCKp high-/low-level width	tĸн1,	· ·		tkcy1/2 - 18		tKCY1/2 - 50		ns				
	tKL1	$2.4~V \leq VDD \leq 3.6~V$		tKCY1/2 - 38		tKCY1/2 - 50		ns				
		1.8 V ≤ VDD ≤ 3.6	S V	_		tkcy1/2 - 50		ns				
SIp setup time (to SCKp↑) Note 1	tsik1	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	S V	44		110		ns				
		2.4 V ≤ VDD ≤ 3.6	S V	75		110	0 1					
		1.8 V ≤ VDD ≤ 3.6	S V	_		110		ns				
SIp hold time (from SCKp↑) Note 2	tKSI1	2.4 V ≤ VDD ≤ 3.6	S V	19		19		ns				
		1.8 V ≤ VDD ≤ 3.6	S V	_		19		ns				
Delay time from SCKp↓ to SOp	tKSO1	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		25		50	ns				
output Note 3			$2.4~V \leq VDD \leq 3.6~V$		25		50	ns				
			$1.8~V \leq V \text{DD} \leq 3.6~V$		_		50	ns				

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **Note 4.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)
- Remark 2. fMCK: Serial array unit operation clock frequency

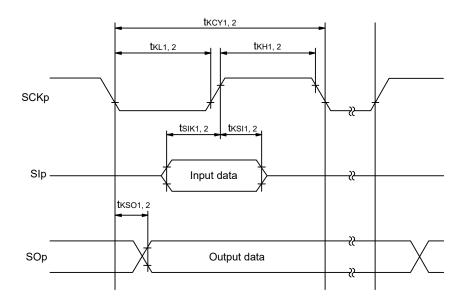
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

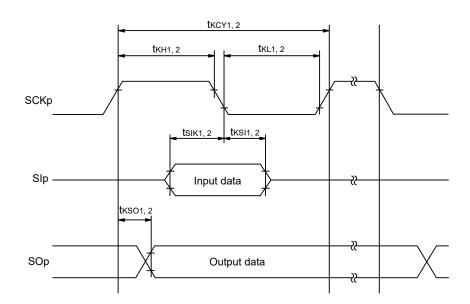

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter	Symbol	Cond	litions	HS (high-spe Mode	,	LS (low-spee	,	Unit	
				MIN.	MAX.	MIN.	MAX.		
SCKp cycle time Note 5	tKCY2	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$	fMCK > 16 MHz	8/fmck		_		ns	
			fMCK ≤ 16 MHz	6/fmck		6/fmck		ns n	
		$2.4~\textrm{V} \leq \textrm{VDD} \leq 3.6~\textrm{V}$		6/fмcк and 500		6/fмcк and 500		ns	
		1.8 V ≤ VDD ≤ 3.6 V		_		6/fмск and 750		ns	
SCKp high-/low-level width	tkH2, tkL2	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		tkcy2/2 - 8		tkcy2/2 - 8		ns	
		$1.8~V \leq V \text{DD} \leq 3.6~V$		_		tkcy2/2 - 18		ns	
SIp setup time (to SCKp↑) Note 1	tsik2	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		1/fмcк + 20		1/fмск + 30		ns	
		$2.4~V \leq V \text{DD} \leq 3.6~V$		1/fмcк + 30		1/fмск + 30		ns	
		$1.8~V \leq VDD \leq 3.6~V$		_		1/fмск + 30		ns	
SIp hold time (from SCKp↑) Note 2	tKSI2	$2.4~V \leq V \text{DD} \leq 3.6~V$		1/fмcк + 31		1/fмск + 31		ns	
		1.8 V ≤ VDD ≤ 3.6 V		_		1/fмск + 31		ns	
Delay time from SCKp↓ to SOp output Note 3	tKSO2	C = 30 pF Note 4	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		2/fмск + 44		2/fмск + 110	ns	
			$2.4~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		2/fмск + 75		2/fмск + 110	ns	
				1.8 V ≤ VDD ≤ 3.6 V		_		2/fмск + 110	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)
- Remark 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


CSI mode connection diagram (during communication at same potential)


Remark 1. p: CSI number (p = 00, 10, 20, 30)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30)

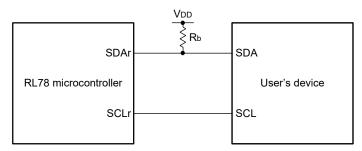
Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) During communication at same potential (simplified I²C mode)

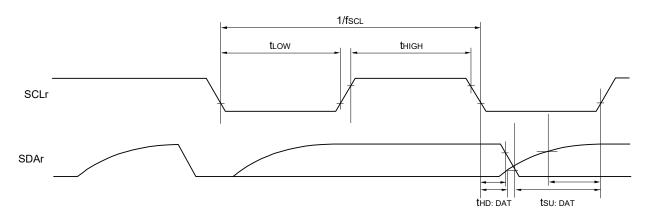
(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter	Symbol	Conditions	HS (high-spe Mode	<i>'</i>	LS (low-spee Mode	,	Unit
			MIN.	MAX.	MIN.	•	
SCLr clock frequency	fscl	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $C_b = 50 \text{ pF, } R_b = 2.7 \text{ k}\Omega$		1000 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$		400 Note 1		400 Note 1	kHz
		$\begin{array}{c} 1.8 \text{ V} \leq \text{VDD} < 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{ Rb} = 5 \text{ k}\Omega \end{array}$		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V},$ $C_b = 50~\text{pF},~R_b = 2.7~\text{k}\Omega$	475		1150		ns
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$	1150		1150		ns
		$1.8~V \leq V_{DD} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1550		1550		ns
Hold time when SCLr = "H"		$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V},$ $C_b = 50~\text{pF},~R_b = 2.7~\text{k}\Omega$	475		1150		ns
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$	1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{VDD} < 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{ Rb} = 5 \text{ k}\Omega \end{array}$	1550		1550		ns
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $C_b = 50 \text{ pF, } R_b = 2.7 \text{ k}\Omega$	1/fMCK + 85 Note 2		1/fмск + 145 Note 2		ns
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $Cb = 100 \text{ pF}, Rb = 3 \text{ k}\Omega$	1/fMCK + 145 Note 2		1/fмск + 145 Note 2		ns
		1.8 V \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1/fMCK + 230 Note 2		1/fмск + 230 Note 2		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $C_b = 50 \text{ pF, } R_b = 2.7 \text{ k}\Omega$	0	305	0	305	ns
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$ $Cb = 100 \text{ pF}, Rb = 3 \text{ k}\Omega$	0	355	0	355	ns
		$1.8 \text{ V} \leq \text{VDD} < 2.7 \text{ V},$ $Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


<R>

<R>

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\textbf{Remark 1.} \ \, \mathsf{Rb}[\Omega] : \mathsf{Communication line (SDAr) pull-up \ resistance, \ } \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance) \\ \mathsf{Cb}[\mathsf{F}] : \mathsf$

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0, 1, 3, 4, 8),

h: POM number (h = 0, 1, 3, 4, 8)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), mn = 0, 02, 10, 12)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})(1/2)$

Parameter	Symbol		Conditions		HS (hig	HS (high-speed main) Mode		LS (low-speed main) Mode	
					MIN.	MAX.	MIN.	MIN. MAX.	
Transfer rate Notes 1, 2		reception		$7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ $3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3	Mbps
				$3 \text{ V} \le \text{VDD} < 3.3 \text{ V},$ $3 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$		fMCK/6 Notes 1, 2, 3		fMCK/6 Notes 1, 2, 3	bps
				Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $VDD \ge Vb$.

Note 3. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}:$ MAX. 2.6 Mbps $1.8 \text{ V} \le \text{VDD} < 2.4 \text{ V}:$ MAX. 1.3 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V \leq VDD \leq 3.6 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 3.6 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})(2/2)$

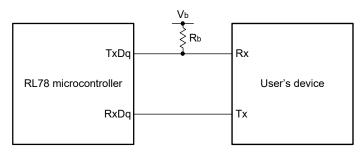
Parameter	Symbol		Conditions	, ,	HS (high-speed main) Mode		LS (low-speed main) Mode	
				MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 2		transmission	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$		Note 1		Note 1	
			Theoretical value of the maximum transfer rate Cb = 50 pF, Rb = $2.7 \text{ k}\Omega$, Vb = 2.3 V		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega,$ $V_b = 1.6 \text{ V}$		0.43 Note 5		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

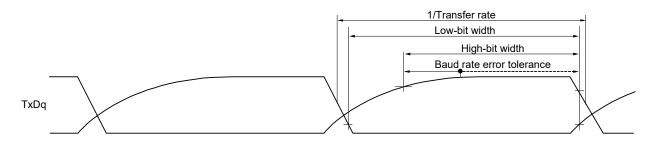
Maximum transfer rate =
$$\frac{1}{ \left\{ -C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b} \right) \right\} \times 3}$$
 [bps]

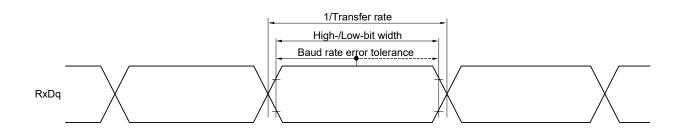
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b}\right)\}}{\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** Use it with $VDD \ge Vb$.
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \text{In } (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{In} \left(1 - \frac{1.5}{\text{Vb}}\right)\} }{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remark 1.** Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)
- Remark 3. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10 to 13))

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-speed Mode	d main)	LS (low-speed Mode	l main)	Unit
				MIN.	MAX.	MIN.	130	
SCKp cycle time	tKCY1	tkcy1 ≥ 2/fclk	$ 2.7 \text{ V} \leq \text{VDD} < 3.6 \text{ V}, \\ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 20 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega $	300		1150		ns
SCKp high-level width	tKH1	$2.7 \text{ V} \le \text{VDD} < 3$ $2.3 \text{ V} \le \text{Vb} \le 2.7$ Cb = 20 pF, Rb = 3	· V,	tKCY1/2 - 120		tKCY1/2 - 120		ns
SCKp low-level width	tKL1	$2.7 \text{ V} \le \text{VDD} < 3$ $2.3 \text{ V} \le \text{Vb} \le 2.7$ Cb = 20 pF, Rb = 3	· V,	tKCY1/2 - 10		tKCY1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsiK1	$2.7 \text{ V} \le \text{VDD} < 3$ $2.3 \text{ V} \le \text{Vb} \le 2.7$ Cb = 20 pF, Rb = 3	· V,	121		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$ 2.7 \ V \le VDD < 3 \\ 2.3 \ V \le Vb \le 2.7 \\ Cb = 20 \ pF, \ Rb = $	· V,	10		10		ns
Delay time from SCKp↓ to SOp output Note 1	tKSO1	$2.7 \text{ V} \le \text{VDD} < 3$ $2.3 \text{ V} \le \text{Vb} \le 2.7$ Cb = 20 pF, Rb = 3	· V,		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$2.7 \text{ V} \le \text{VDD} < 3.$ $2.3 \text{ V} \le \text{Vb} \le 2.7$ $C_b = 20 \text{ pF}, R_b = 0.$	V,	33		110		ns
SIp hold time (from SCKp↓) Note 2	tKSI1	$2.7 \text{ V} \le \text{VDD} < 3.$ $2.3 \text{ V} \le \text{Vb} \le 2.7$ $C_b = 20 \text{ pF}, R_b = 0.$	V,	10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tKSO1	$2.7 \text{ V} \le \text{VDD} < 3.$ $2.3 \text{ V} \le \text{Vb} \le 2.7$ Cb = 20 pF, Rb = 3.	V,		10		10	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0),

n: Channel number (n = 0), g: PIM and POM number (g = 4)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)(1/2)

Parameter	Symbol		Conditions	HS (high-spee	,	LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	$ 2.7 \text{ V} \leq \text{VDD} < 3.6 \text{ V}, 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 30 \text{ pF, Rb} = 2.7 \text{ k}\Omega $	500 Note		1150		ns
			$\begin{array}{c} 1.8 \; \text{V} \leq \text{VDD} < 3.3 \; \text{V}, \; 1.6 \; \text{V} \leq \text{Vb} \leq 1.8 \; \text{V}, \\ \text{Cb} = 30 \; \text{pF}, \; \text{Rb} = 5.5 \; \text{k}\Omega \end{array}$	1150 Note		1150		ns
SCKp high-level width	tкн1	2.7 V ≤ VDD ≤ 3 Cb = 30 pF, Rb	3.6 V, 2.3 V \leq Vb \leq 2.7 V, = 2.7 k Ω	tkcy1/2 - 170		tKCY1/2 - 170		ns
		1.8 V ≤ VDD < 3 Cb = 30 pF, Rb	3.3 V, 1.6 V \leq Vb \leq 2.0 V, = 5.5 k Ω	tKCY1/2 - 458		tKCY1/2 - 458		ns
SCKp low-level width	tKL1	2.7 V ≤ VDD ≤ 3 Cb = 30 pF, Rb	$3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ = $2.7 \text{ k}\Omega$	tKCY1/2 - 18		tKCY1/2 - 50		ns
		1.8 V ≤ VDD < 3 Cb = 30 pF, Rb	3.3 V, 1.6 V \leq Vb \leq 2.0 V, = 5.5 kΩ	tKCY1/2 - 50		tKCY1/2 - 50		ns

Note Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

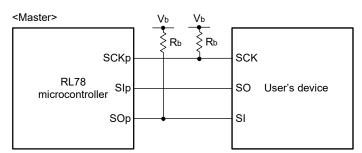
(Remarks are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})(2/2)$

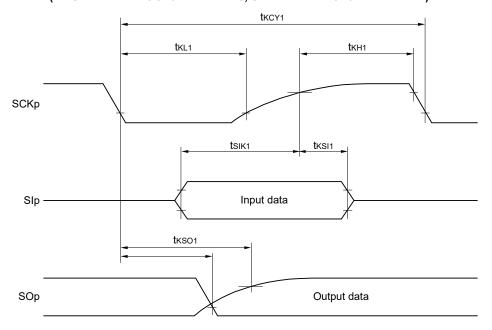
Parameter	Symbol	Conditions	٠. ٠	peed main) ode	, ,	peed main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsiK1	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V \leq V_{b} \leq 2.7~V,$ $C_{b} = 30~pF,~R_{b} = 2.7~k\Omega$	177		479		ns
			479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V \leq V_{b} \leq 2.7~V,$ $C_{b} = 30~pF,~R_{b} = 2.7~k\Omega$	19		19		ns
		$ 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V} \text{ Note } 3, $ $ \text{Cb} = 30 \text{ pF}, \ \text{Rb} = 5.5 \text{ k} \Omega $	19		19		ns
Delay time from SCKp↓ to SOp	tKSO1	$2.7~V \leq V_{DD} \leq 3.6~V, \ 2.3~V \leq V_{b} \leq 2.7~V,$ $C_{b} = 30~pF, \ R_{b} = 2.7~k\Omega$		195		195	ns
output Note 1		$ 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V} \text{ Note } ^3, $ $ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k} \Omega $		483		483	ns
SIp setup time (to SCKp↓) Note 2	tsiK1	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V \leq V_{b} \leq 2.7~V,$ $C_{b} = 30~pF,~R_{b} = 2.7~k\Omega$	44		110		ns
		$ 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V} \text{ Note } ^3, $ $ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k} \Omega $	110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.7~V \leq V_{DD} \leq 3.6~V, \ 2.3~V \leq V_{b} \leq 2.7~V,$ $C_{b} = 30~pF, \ R_{b} = 2.7~k\Omega$	19		19		ns
		$ 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \text{ Note } 3, $ $ \text{Cb} = 30 \text{ pF}, \ \text{Rb} = 5.5 \text{ k} \Omega $	19		19		ns
Delay time from SCKp↑ to SOp output Note 2	tKSO1	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V \leq V_{b} \leq 2.7~V,$ $C_{b} = 30~pF,~R_{b} = 2.7~k\Omega$		25		25	ns
		$ 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V} \text{ Note } 3, $ $ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k} \Omega $		25		25	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

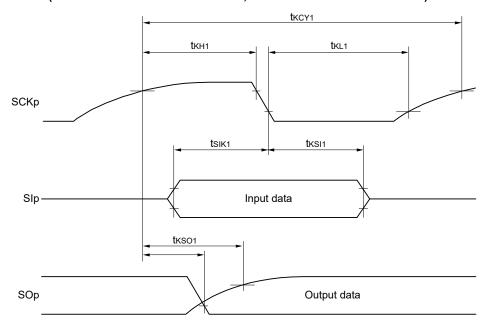

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $VDD \ge Vb$.

CSI mode connection diagram (during communication at different potential)



- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)
- Remark 3. fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 02, 10, 12))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

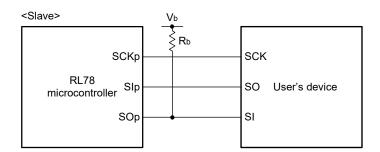
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 3, 4, 8)

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

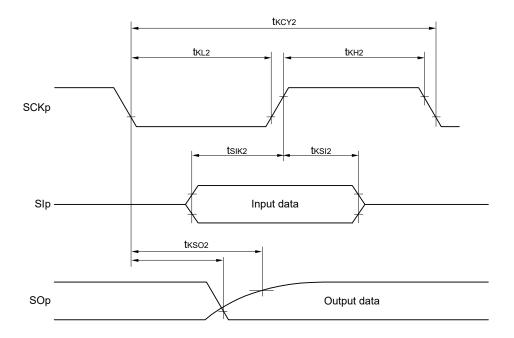
$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Con	ditions	HS (high-sp Mo	,	LS (low-sp Mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tKCY2	$2.7~V \leq V \text{DD} \leq 3.6~V,$	20 MHz < fmck ≤ 24 MHz	16/fмск		_		ns
		$2.3~V \leq Vb \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	14/fmck		_		ns
			8 MHz < fMCK ≤ 16 MHz	12/fмск		_		ns
			4 MHz < fmck ≤ 8 MHz	8/fmck		16/fмск		ns
			fMCK ≤ 4 MHz	6/fmck		10/fмск		ns
		1.8 V ≤ VDD < 3.3 V,	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		ns
		$1.6~V \le V_b \le 2.0~V~Note~2$	16 MHz < fмcк ≤ 20 MHz	32/fмcк		_		ns
			8 MHz < fмcк ≤ 16 MHz	26/fмск		_		ns
			4 MHz < fmck ≤ 8 MHz	16/fмск		16/fмск		ns
			fMCK ≤ 4 MHz	10/fмск		10/fmck		ns
SCKp high-/low-level width	tKH2, tKL2	$2.7~\textrm{V} \leq \textrm{VDD} \leq 3.6~\textrm{V},~2.3~\textrm{V}$	V ≤ Vb ≤ 2.7 V	tKCY2/2 - 18		tKCY2/2 - 50		ns
		1.8 V ≤ VDD < 3.3 V, 1.6 V	$V \le Vb \le 2.0 V$ Note 2	tKCY2/2 - 50		tKCY2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsık2	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		1/fмcк + 20		1/fмcк + 30		ns
		1.8 V ≤ VDD < 3.3 V		1/fмск + 30		1/fMCK + 30		ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V}$ Cb = 30 pF, Rb = 2.7 k Ω	$V \le Vb \le 2.7 V$		2/fMCK + 214		2/fмск + 573	ns
to SOp output Note 3		$1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \text{ Note 2}$ $C_b = 30 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega$			2/fмск + 573		2/fмск + 573	ns

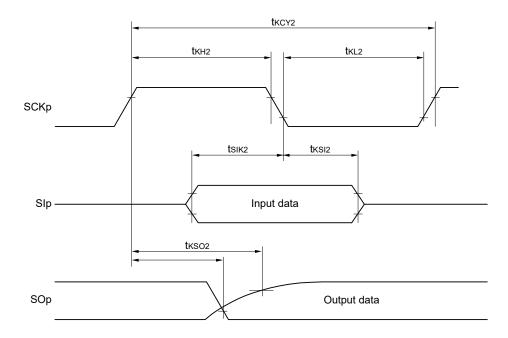

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $VDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



CSI mode connection diagram (during communication at different potential)



- Remark 1. $Rb[\Omega]$: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)

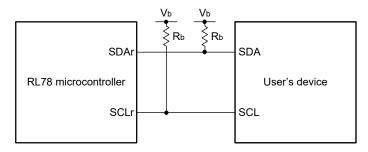
(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

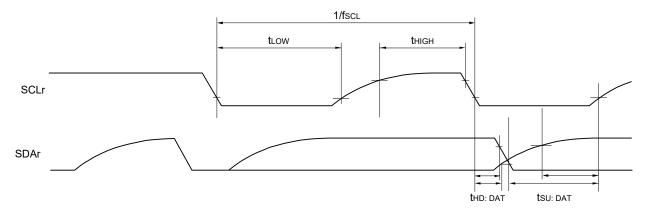
Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	LS (low-speed	d main) Mode	Unit
Parameter	Symbol	Conditions	MIN.	MAX.	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \ 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ		1000 Note 1		300 Note 1	kHz
		$ 2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, $ Cb = 100 pF, Rb = 2.7 kΩ		400 Note 1		300 Note 1	kHz
		$ 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V} \text{ Note 2}, $ $ \text{Cb} = 100 \text{ pF}, \ \text{Rb} = 5.5 \text{ k}\Omega $		400 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V \leq V_{b} < 2.7~V,$ $C_{b} = 50~pF,~R_{b} = 2.7~k\Omega$	475		1550		ns
		$2.7 \text{ V} \le \text{VDD} < 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	1150		1550		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_{b} \leq 2.0~V~Note~2,$ $C_{b} = 100~pF,~R_{b} = 5.5~k\Omega$	1550		1550		ns
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \ 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	200		610		ns
		$ 2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, $ Cb = 100 pF, Rb = 2.7 k \Omega	600		610		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_{b} \leq 2.0~V~\text{Note 2},$ $C_{b} = 100~\text{pF},~R_{b} = 5.5~\text{k}\Omega$	610		610		ns
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V \leq V_{b} \leq 2.7~V,$ $C_{b} = 50~pF,~R_{b} = 2.7~k\Omega$	1/fMCK + 135 Note 3		1/fMCK + 190 Note 3		ns
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \ 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_{b} \leq 2.0~V~^{Note~2},$ $C_{b} = 100~pF,~R_{b} = 5.5~k\Omega$	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V \leq V_{b} \leq 2.7~V,$ Cb = 50 pF, Rb = 2.7 kΩ	0	305	0	305	ns
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	0	355	0	355	ns
		$1.8~V \le V_{DD} < 3.3~V,~1.6~V \le V_{b} \le 2.0~V~\text{Note 2},$ $C_{b} = 100~\text{pF},~R_{b} = 5.5~\text{k}\Omega$	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Use it with $VDD \ge Vb$.


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0, 1, 3, 4, 8)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), mn = 00, 02, 10, 12)

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Co	onditions	` •	speed main) ode	LS (low-spee	ed main) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fSCL	Standard mode:	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$	0	100	0	100	kHz
		fclk ≥ 1 MHz	1.8 V ≤ VDD ≤ 3.6 V	_	_	0	100	kHz
Setup time of restart	tsu: sta	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.7		4.7		μS
condition		1.8 V ≤ VDD ≤ 3.6	V	-	_	4.7		μs
Hold time Note 1	thd: sta	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.0		4.0		μS
		1.8 V ≤ VDD ≤ 3.6	V	-	_	4.0		μs
Hold time	tLOW	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.7		4.7		μS
when SCLA0 = "L"		1.8 V ≤ VDD ≤ 3.6	V	-	_	4.7		μS
Hold time	tHIGH	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.0		4.0		μs
when SCLA0 = "H"		1.8 V ≤ VDD ≤ 3.6	V	-	_	4.0		μS
Data setup time	tsu: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	250		250		ns
(reception)		1.8 V ≤ VDD ≤ 3.6	V	-	_	250		ns
Data hold time	thd: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	0	3.45	0	3.45	μS
(transmission) Note 2		1.8 V ≤ VDD ≤ 3.6	V	-	_	0	3.45	μS
Setup time of stop	tsu: sto	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.0		4.0		μS
condition		1.8 V ≤ VDD ≤ 3.6	V	-	_	4.0		μS
Bus-free time	tBUF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.7		4.7		μS
		1.8 V ≤ VDD ≤ 3.6	V	-	_	4.7		μS

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at

that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 $k\Omega$

(2) I²C fast mode

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	С	onditions	, ,	speed main) ode	, ,	,	Unit
				MIN.	MAX.	MIN.	•	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq V \text{DD} \leq 3.6~V$	0	400	0	400	kHz
		fclk ≥ 3.5 MHz	1.8 V ≤ VDD ≤ 3.6 V	0	400	0	400	kHz
Setup time of restart	tsu: sta	2.7 V ≤ VDD ≤ 3.6	V	0.6		0.6		μS
condition		1.8 V ≤ VDD ≤ 3.6	V	-	_	0.6		μS
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 3.6	V	0.6		0.6		μS
		1.8 V ≤ VDD ≤ 3.6	V	-	_	0.6		μS
Hold time	tLOW	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	1.3		1.3		μS
when SCLA0 = "L"		1.8 V ≤ VDD ≤ 3.6	V			1.3		μS
Hold time	thigh	$2.7 \text{ V} \le \text{VDD} \le 3.6$	V	0.6		0.6		μS
when SCLA0 = "H"		1.8 V ≤ VDD ≤ 3.6	V	-	_	0.6		μS
Data setup time	tsu: DAT	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	100		100		ns
(reception)		1.8 V ≤ VDD ≤ 3.6	V	-	_	100		ns
Data hold time	thd: dat	2.7 V ≤ VDD ≤ 3.6	V	0	0.9	0	0.9	μS
(transmission) Note 2		1.8 V ≤ VDD ≤ 3.6	V			0	0.9	μS
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 3.6	V	0.6		0.6		μS
condition		1.8 V ≤ VDD ≤ 3.6	V		_	0.6		μS
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 3.6	V	1.3		1.3		μS
		1.8 V ≤ VDD ≤ 3.6	V	-	_	1.3		μS

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

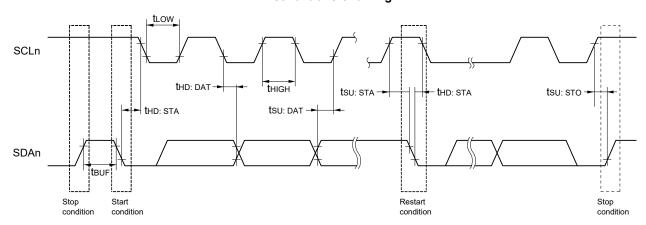
Remark

The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

(3) I²C fast mode plus

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 3.6 V, VSS = 0 V)


Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode plus: fclk ≥ 10 MHz	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$	0	1000	_	-	kHz
Setup time of restart condition	tsu: sta	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		0.26		_	_	μS
Hold time Note 1	thd: STA	$2.7~V \leq V \text{DD} \leq 3.6~V$		0.26		_	_	μS
Hold time when SCLA0 = "L"	tLOW	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		0.5		_	-	μs
Hold time when SCLA0 = "H"	tHIGH	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		0.26		_	-	μS
Data setup time (reception)	tsu: DAT	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		50		_	-	ns
Data hold time (transmission) Note 2	thd: dat	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		0	0.45	_	_	μs
Setup time of stop condition	tsu: sto	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		0.26		_	_	μs
Bus-free time	tBUF	$2.7~V \leq V \text{DD} \leq 3.6~V$		0.5		_	_	μS

- Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
- **Note 2.** The maximum value (MAX.) of thd: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: Cb = 120 pF, Rb = 1.1 $k\Omega$

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(TA = -40 to +85°C, 1.8 V \leq AVREFP \leq AVDD \leq VDD \leq 3.6 V, VSS = AVSS = 0 V, reference voltage(+) = AVREFP, reference voltage(-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			_	_	12	bit
Analog capacitance	Cs			_	_	15	pF
Analog input resistance	Rs			_	_	2.5	kΩ
Frequency	ADCLK	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	1	_	24	MHz
			$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	1	_	16	MHz
		Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	1	_	24	MHz
			$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	1	_	16	MHz
			$1.8 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	1	_	8	MHz
Conversion time Note Toonv	High-speed mode ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.7~V~\le AVREFP \le AVDD \le VDD \le 3.6~V$ Permissible signal source impedance max = $0.3~k\Omega$ ADCLK = $24~MHz$	3	_	_	μs	
			$2.4~V \le AVREFP \le AVDD \le VDD \le 3.6~V$ Permissible signal source impedance max = $1.3~k\Omega$ ADCLK = $16~MHz$	4.5	_	_	μs
		Normal mode ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.7~V \le AVREFP \le AVDD \le VDD \le 3.6~V$ Permissible signal source impedance max = 1.1 k Ω ADCLK = 24 MHz	3.4	_	_	μs
			$2.4~V \le AVREFP \le AVDD \le VDD \le 3.6~V$ Permissible signal source impedance max = $2.2~k\Omega$ ADCLK = $16~MHz$	5.1	_	_	μs
			$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6 \text{ V}$ Permissible signal source impedance max = $5 \text{ k}\Omega$ ADCLK = 8 MHz	10.1	_	_	μs
Overall error	AINL	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.25	±5.0	LSB
		ADCSR.ADHSC = 0 ADSSTRn = 28 H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.25	±5.0	LSB
		Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.25	±5.0	LSB
		ADCSR.ADHSC = 1	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.25	±5.0	LSB
		ADSSTRn = 28H	$1.8 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±3.0	±8.0	LSB
Zero-scale error	Ezs	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±0.5	±4.5	LSB
		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±0.5	±4.5	LSB
		Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±0.5	±4.5	LSB
		ADCSR.ADHSC = 1	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6 \text{ V}$	_	±0.5	±4.5	LSB
		ADSSTRn = 28H	$1.8 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1	±7.5	LSB

<	R	>
<	R	>

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Full-scale error	EFS	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±0.75	±4.5	LSB
	ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±0.75	±4.5	LSB	
	Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±0.75	±4.5	LSB	
	ADCSR.ADHSC = 1	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±0.75	±4.5	LSB	
		ADSSTRn = 28H	$1.8 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.5	±7.5	LSB
Differential linearity	DLE	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	_	LSB
error		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	_	LSB
		Normal mode ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	_	LSB
			$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	_	LSB
			$1.8 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	_	LSB
Integral linearity error	ILE	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	±3.0	LSB
		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	±4.5	LSB
		Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	±3.0	LSB
		ADSSTD = 2011	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.0	±3.0	LSB
		ADSSTRn = 28H	$1.8 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	±1.25	±3.0	LSB

Note The conversion time is the sum of sampling time and comparison time. The values indicated in the table are those in the case of 40 clock cycles of ADCLK per sampling state.

Caution The characteristics above only apply when pins other than those of the A/D converter are not in use. The overall error includes the quantization error. Each of the offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error does not include the quantization error.

[Reference value for design (not guaranteed)]

We can provide the design reference values for the A/D converter. Note, however, that these values are not guaranteed and can only be used as a reference when using this function. See below for details.

(TA = 0 to +50°C, 2.0 V \leq AVREFP \leq AVDD \leq VDD \leq 3.6 V, VSS = AVSS = 0 V, reference voltage(+) = AVREFP, reference voltage(-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES					Note 3	bit
Analog capacitance	Cs					Note 3	pF
Analog input	Rs			_	_	Note 3	kΩ
resistance							
Frequency	fclk	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	Note 3	_	Note 3	MHz
			$2.4~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	Note 3	_	Note 3	MHz
		Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	Note 3	_	Note 3	MHz
			$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	Note 3	_	Note 3	MHz
			$2.0~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	Note 3	_	Note 3	MHz

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Conversion time	Tconv	High-speed mode ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.7 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6 \text{ V}$ Permissible signal source impedance max = $0.3 \text{ k}\Omega$ ADCLK = 24 MHz	Note 3	-	-	μs
			$2.4~V \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6~V$ Permissible signal source impedance $\max = 1.3~k\Omega$ $\text{ADCLK} = 16~\text{MHz}$	Note 3	_		μs
		Normal mode ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.7~V \le AVREFP \le AVDD \le VDD \le 3.6~V$ Permissible signal source impedance max = 1.1 k Ω ADCLK = 24 MHz	Note 3	_	_	μs
			$2.4~V \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6~V$ Permissible signal source impedance $\max = 2.2~k\Omega$ $\text{ADCLK} = 16~\text{MHz}$	Note 3	_	_	μs
			$ \begin{tabular}{ll} 2.0 \ V \le AVREFP \le AVDD \le VDD \le 3.6 \ V \\ Permissible signal source impedance \\ max = 5 \ k\Omega \\ ADCLK = 8 \ MHz \\ \end{tabular} $	Note 3	_	1	μs
Overall error	AINL	High-speed mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	Note 3	LSB
		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
		Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	Note 3	LSB
		ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.4~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
		AD331KII - 26H	$2.0~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
Zero-scale error	Ezs	High-speed mode	$2.7~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
Notes 1, 2		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	Note 3	LSB
		Normal mode ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	Note 3	LSB
			$2.4~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
			$2.0 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	±4.5	LSB
Full-scale error	EFS	High-speed mode	$2.7~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
Notes 1, 2		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	Note 3	LSB
		Normal mode	$2.7~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
		ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.4~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	Note 3	LSB
		AD3311(1 - 2011	$2.0 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	±4.5	LSB
Differential linearity	DLE	High-speed mode	$2.7~\text{V} \leq \text{AVREFP} \leq \text{AVDD} \leq \text{VDD} \leq 3.6~\text{V}$	_	Note 3	_	LSB
error		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	_	LSB
		Normal mode	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	_	LSB
		ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	_	LSB
			$2.0 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	_	LSB
Integral linearity error	ILE	High-speed mode ADCSR.ADHSC = 0	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$ $2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_ 	Note 3	Note 3	LSB LSB
		ADSSTRn = 28H					
		Normal mode ADCSR.ADHSC = 1	$2.7 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$ $2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le \text{VDD} \le 3.6 \text{ V}$	_	Note 3	Note 3	LSB LSB
		ADSSTRn = 28H		ļ			

- Note 1. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.
- **Note 2.** These values are the results of characteristic evaluation.
- Note 3. The reference value is not available.

Caution The characteristics above only apply when pins other than those of the A/D converter are not in use. The overall error includes the quantization error. Each of the offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error does not include the quantization error.

2.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	TA = +25°C	_	1.05	_	V
Internal reference voltage	VBGR		1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature	_	-3.6	_	mV/°C
Operation stabilization wait time	tamp	$2.4~V \leq V \text{DD} \leq 3.6~V$	5	_	_	μs

2.6.3 D/A converter characteristics

(1) When reference voltage = AVREFP, AVREFM

(TA = -40 to +85°C, 1.8 V \leq AVREFP \leq AVDD \leq VDD \leq 3.6 V, Vss = AVSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Load resistance	R0		30			kΩ
Load capacitance	C0				50	pF
Output voltage range	Tout		0.35		AVDD - 0.47	V
Differential linearity error	DNL			±0.5	±1.0	LSB
Integral linearity error	AINL			±0.4	±8.0	LSB
Zero-scale error	Ezs				±20	mV
Full-scale error	EFS				±20	mV
Output resistance	Ro			5		Ω
Conversion time	tcon				30	μS

(2) When reference voltage = AVDD, AVSS

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Load resistance	R0		30			kΩ
Load capacitance	C0				50	pF
Output voltage range	Tout		0.35		AVDD - 0.47	V
Differential linearity error	DNL			±0.5	±2.0	LSB
Integral linearity error	AINL			±0.4	±8.0	LSB
Zero-scale error	Ezs				±30	mV
Full-scale error	EFS				±30	mV
Output resistance	Ro			5		Ω
Conversion time	tcon				30	μs

2.6.4 Comparator

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivcmp			-0.3		VDD + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/μs	Comparator high-speed mode, standard mode			1.2	μS
			Comparator high-speed mode, window mode			2.0	μS
			Comparator low-speed mode, standard mode		3	5.0	μS
High-electric-potential judgment voltage	VTW+	Comparator high-speed mod	de, window mode		0.76 VDD		V
Low-electric-potential judgment voltage	VTW-	Comparator high-speed mod	de, window mode		0.24 VDD		V
Operation stabilization wait time	tCMP			100			μS
Internal reference voltage ^{Note}	VBGR	$2.4 \text{ V} \le \text{VDD} \le 3.6 V, HS (high$	gh-speed main) mode	1.38	1.45	1.50	V

Note Not usable in LS (low-speed main) mode, subsystem clock operation, or STOP mode.

2.6.5 Rail to rail operational amplifier characteristics

(TA = -40 to +85°C, 2.2 V \leq AVDD \leq VDD \leq 3.6 V, AVss = Vss = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Circuit current	lcc1	Low-power consur	mption mode	_	10	16	μΑ
	Icc2	High-speed mode		_	210	350	μΑ
Common mode input	Vicm1	Low-power consur	nption mode	0.1	_	AVDD-0.1	V
range	Vicm2	High-speed mode		0.1	_	AVDD-0.1	V
Output voltage range	Vo1	Low-power consur	mption mode	0.1	_	AVDD-0.1	V
	Vo2	High-speed mode		0.1	_	AVDD-0.1	V
Input offset voltage	Fioff	Low-power consur	nption mode	-10	_	10	mV
		High-speed mode		-5	_	5	mV
Open gain	Av			_	120	_	dB
Gain-bandwidth (GB)	GBW1	Low-power consur	nption mode	_	0.06	_	MHz
product	GBW2	High-speed mode	High-speed mode		1	_	MHz
Phase margin	PM	CL = 22 pF	CL = 22 pF		_	_	deg
Gain margin	GM	CL = 20 pF		10	_	_	dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power	_	900	_	nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode	_	450	_	nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode	_	80	_	nV/√Hz
	Vnoise4	f = 2 kHz	7	_	50	_	nV/√Hz
Power supply reduction ratio	PSRR			_	90	_	dB
Common mode signal reduction ratio	CMRR			_	90	_	dB
Operation stabilization wait time	Tstd1	CL = 20 pF	Low-power consumption mode	_	110	300	μs
	Tstd2	CL = 20 pF	High-speed mode	_	5	14	μs
Settling time	Tset1	CL = 20 pF	Low-power consumption mode	_	110	300	μs
	Tset2	CL = 20 pF	High-speed mode	_	4	14	μs
Slew rate	Tselw1	CL = 20 pF	Low-power consumption mode	0.01	0.04	_	V/µs
	Tselw2	CL = 20 pF	High-speed mode	0.3	0.7	_	V/µs
Load current	lload1	Low-power consur	nption mode	-110	_	110	μA
	Iload2	High-speed mode		-110	<u> </u>	110	μA
Load capacitance	CL			_	<u> </u>	22	pF
Analog MUX ON resistance	Ron	One channel		_	_	1	kΩ

[Reference value for design (not guaranteed)]

We can provide the design reference values for the rail-to-rail operational amplifier. Note, however, that these values are not guaranteed and can only be used as a reference when using this function. See below for details.

(Ta = 0 to 50°C, 2.0 V \leq AVDD \leq VDD \leq 3.6 V, AVss = Vss = 0 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Circuit current	lcc1	Low-power consum	ption mode	_	Note 3	Note 3	μΑ
	lcc2	High-speed mode		_	Note 3	Note 3	μΑ
Common mode input	Vicm1	Low-power consum	ption mode	Note 3	_	Note 3	V
range	Vicm2	High-speed mode		Note 3	_	Note 3	V
Output voltage range	Vo1	Low-power consum	ption mode	Note 3	_	Note 3	V
	Vo2	High-speed mode		Note 3	_	Note 3	V
Input offset voltage	Fioff	Low-power consum	ption mode	-7	_	7	mV
Note 1, Note 2		High-speed mode	Note 3	_	Note 3	mV	
Open gain	Av			Note 3	Note 3	_	dB
Gain-bandwidth (GB)	GBW1	Low-power consum	_	Note 3	_	MHz	
product	GBW2	High-speed mode		_	Note 3	_	MHz
Phase margin	PM	CL = 22 pF		Note 3	_	_	deg
Gain margin	GM	CL = 20 pF	Note 3	_	_	dB	
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power	_	Note 3	_	nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode	_	Note 3	_	nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode	_	Note 3	_	nV/√Hz
	Vnoise4	f = 2 kHz	-	_	Note 3	_	nV/√Hz
Power supply reduction	PSRR			_	Note 3	_	dB
ratio							
Common mode signal	CMRR			_	Note 3	_	dB
reduction ratio							
Operation stabilization	Tstd1	CL = 20 pF	Low-power	_	Note 3	Note 3	μs
wait time			consumption mode				
	Tstd2	CL = 20 pF	High-speed mode	_	Note 3	Note 3	μs
Settling time	Tset1	CL = 20 pF	Low-power	_	Note 3	Note 3	μs
			consumption mode				
	Tset2	CL = 20 pF	High-speed mode	_	Note 3	Note 3	μs
Slew rate	Tselw1	CL = 20 pF	Low-power	Note 3	Note 3	_	V/µs
			consumption mode				
	Tselw2	CL = 20 pF	High-speed mode	Note 3	Note 3	_	V/µs
Load current	lload1	Low-power consum	ption mode	Note 3	_	Note 3	μΑ
	lload2	High-speed mode		Note 3	_	Note 3	μA
Load capacitance	CL			_	_	Note 3	pF
Analog MUX ON	Ron	One channel	_	_	Note 3	kΩ	
resistance							

Note 1. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.

Note 2. These values are the results of characteristic evaluation.

Note 3. The reference value is not available.

2.6.6 General purpose operational amplifier characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVSS = VSS = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Circuit current	lcc1	Low-power consu	ımption mode		2	4	μА
	lcc2	High-speed mode)		140	280	μА
Common mode input range	Vicm1	Low-power consu	ımption mode	0.2		AVDD-0.5	V
	Vicm2	High-speed mode	Э	0.3		AVDD-0.6	V
Output voltage range	Vo1	Low-power consu	ımption mode	0.1		AVDD-0.1	V
	Vo2	High-speed mode	9	0.1		AVDD-0.1	V
Input offset voltage	Fioff	3σ		-10		+10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consu	ımption mode		0.04		MHz
	GBW2	High-speed mode	9		1.7		MHz
Phase margin	PM	CL = 20 pF		50			deg
Gain margin	GM	CL = 20 pF		10			dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power		230		nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode		200		nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode		90		nV/√Hz
	Vnoise4	f = 2 kHz			70		nV/√Hz
Power supply reduction ratio	PSRR				90		dB
Common mode signal reduction ratio	CMRR				90		dB
Operation stabilization wait time	Tstd1	CL = 20 pF	Low-power consumption mode			650	μs
	Tstd2	CL = 20 pF	High-speed mode			13	μs
Settling time	Tset1	CL = 20 pF	Low-power consumption mode			750	μs
	Tset2	CL = 20 pF	High-speed mode			13	μS
Slew rate	Tselw1	CL = 20 pF	Low-power consumption mode		0.02		V/μs
	Tselw2	CL = 20 pF	High-speed mode		1.1		V/μs
Load current	lload1	Low-power consu	ımption mode	-100		100	μА
	lload2	High-speed mode	e	-100		100	μА
Load capacitance	CL					20	pF

<R> 2.6.7 Voltage reference

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVSS = VSS = 0 V)

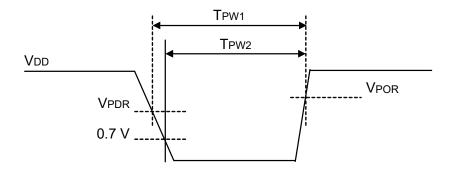
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Reference voltage output	VREF1	VSEL = 00, 2.65 V ≤ AVDD ≤ 3.6V	2.425	2.5	2.575	V
Note 2	VREF2	VSEL = 01, 2.2 V ≤ AVDD ≤ 3.6V	1.987	2.048	2.109	V
	VREF3	VSEL = 10, 2.0 V ≤ AVDD ≤ 3.6V	1.746	1.8	1.854	V
	VREF4	VSEL = 11, 1.8 V ≤ AVDD ≤ 3.6V	1.455	1.5	1.545	V
Settling time		From power-on to AVDD settling (external capacitance: 10 µF)			50	ms
Load current of the AVREFP/VREFOUT pin Notes 1, 3	ILoad				200	μА

- Note 1. Connect AVREFP/AVREFOUT pins to the ground via a tantalum capacitor (capacity: 10 μF ±30%, ESR: 2Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacity: 0.1 μF ±30%, ESR: 2Ω (max.), ESL: 10nH (max.)).
- **Note 2.** The values specified in the Reference voltage output column apply when a load is stable. These values cannot be guaranteed when the load is variable.
- **Note 3.** Total load current, including the load current when AVREFP/VREFOUT is in use for the on-chip A/D converter and D/A converter reference potential.

When AVREFP/VREFOUT is in use for the on-chip A/D converter load reference, the maximum load current is 55 μ A. When AVREFP/VREFOUT is in use for the on-chip D/A converter (channel 1), the maximum load current is 55 μ A.

<R> 2.6.8 1/2 AVDD voltage output

(TA = -40 to +85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVSS = VSS = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage accuracy			-4.0		+4.0	%
Sampling time for the corresponding channel			20.0			μs

2.6.9 POR circuit characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall timeNote 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	300			μs
	TPW2	STOP/SUB HALT/SUB RUN	300			μs

- **Note 1.** If the power supply voltage falls while the voltage detector is off, be sure to either shift to STOP mode or execute a reset by using the voltage detector or external reset pin before the power supply voltage falls below the minimum operating voltage specified in 2.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.10 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, $VPDR \le VDD \le 3.6 V$, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVD2	Power supply rise time	3.07	3.13	3.19	V
		Power supply fall time	3.00	3.06	3.12	V
	VLVD3	Power supply rise time	2.96	3.02	3.08	V
		Power supply fall time	2.90	2.96	3.02	V
	VLVD4	Power supply rise time	2.86	2.92	2.97	V
		Power supply fall time	2.80	2.86	2.91	V
	VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V
	VLVD6	Power supply rise time	2.66	2.71	2.76	V
		Power supply fall time	2.60	2.65	2.70	V
	VLVD7	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V
	VLVD8	Power supply rise time	2.45	2.50	2.55	V
		Power supply fall time	2.40	2.45	2.50	V
	VLVD9	Power supply rise time	2.05	2.09	2.13	V
		Power supply fall time	2.00	2.04	2.08	V
	VLVD10	Power supply rise time	1.94	1.98	2.02	V
		Power supply fall time	1.90	1.94	1.98	V
	VLVD11	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V
Minimum pulse width	tLW		300			μs
Detection delay time					300	μS

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 3.6 V @ 1 MHz to 24 MHz

 \mbox{Vdd} = 2.4 to 3.6 V @ 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 3.6 V @ 1 MHz to 8 MHz

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol		Cond	ditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVDB0	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, f	alling reset voltage: 1.8 V	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0,	/POC0, VPOC1, VPOC2 = 0, 1, 0, falling reset voltage: 2.4 V			2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, f	alling reset voltage: 2.7 V	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

2.6.11 Low-resistance switch

(TA = -40 to + 85°C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ON resistance 1	Ron1	AMP0OPD, AMP1OPD	_	16	50	Ω
		Load current < 0.1 mA	_			
ON resistance 2	Ron2	AMP2OPD		10	30	
		Load current < 0.1 mA	_	10		
Load current	Icas	-	_	_	0.1	mA

[Reference value for design (not guaranteed)]

We can provide the design reference values for the low-resistance switch. Note, however, that these values are not guaranteed and can only be used as a reference when using this function. See below for details.

(TA = 0 to + 50°C, 2.0 V \leq AVDD \leq VDD \leq 3.6 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ON resistance 1 Note 1, Note 2	Ron1	AMP0OPD, AMP1OPD		Note 3	26	Ω
		Load current < 0.1 mA	_			
ON resistance 2 Note 1, Note 2	Ron2	AMP2OPD		Note 3	15	
		Load current < 0.1 mA	_			
Load current	Icas	_	_	_	Note 3	mA

Note 1. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.

Note 2. These values are the results of characteristic evaluation.

Note 3. The reference value is not available.

<R>

2.7 Power supply voltage rising slope characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

- Caution 1. Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.
- Caution 2. When the voltages for VDD and AVDD differ and they rise at different rates, if AVDD is lower than 0.8 V at the time of the release from the internal reset state by the power-on reset (POR) circuit, the chip may not start normally. In such cases, apply either of the following countermeasures.
 - Hold AVDD ≥ 0.8 V until VDD ≥ 1.47 V.
 - Hold the RESET pin low until VDD ≥ 1.47 V and AVDD ≥ 0.8 V.

2.8 LCD Characteristics

2.8.1 Resistance division method

(1) Static display mode

 $(TA = -40 \text{ to } +85^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

 $(TA = -40 \text{ to } +85^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

2.8.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 V _{L1} - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 Note 1 =	= 0.47 μF	3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 Note 1 =	= 0.47μF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL4 and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 Note 1 =	= 0.47 μF	2 V _{L1} - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 Note 1 =	= 0.47 μF	3 V _{L1} - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	= 0.47 μF	4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47μF	500			ms

- Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL3 and GND
 - C5: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- **Note 2.** This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

<R> 2.8.3 Capacitor split method

(1) 1/3 bias method

(TA = -40 to +85°C, 2.2 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C3 = 0.47 µF Note 2		VDD		V
VL2 voltage	V _{L2}	C1 to C3 = 0.47 µF Note 2	2/3 VL4 - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
VL1 voltage	V _L 1	C1 to C3 = 0.47 µF Note 2	1/3 VL4 - 0.1	1/3 VL4	1/3 VL4 + 0.1	V
Capacitor split wait time Note 1	tvwait		100			ms

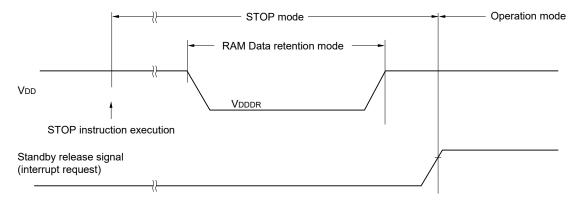
Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND


 $C1 = C2 = C3 = 0.47 \ \mu F \pm 30\%$

2.9 RAM data retention characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.10 Flash Memory Programming Characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fCLK	$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

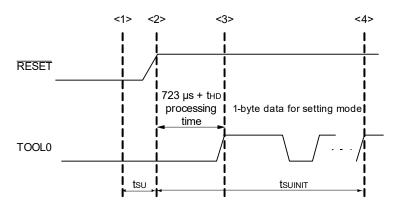
Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

2.11 Dedicated Flash Memory Programmer Communication (UART)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Note 2. When using flash memory programmer and Renesas Electronics self programming library


Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.12 Timing Specs for Switching Modes

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

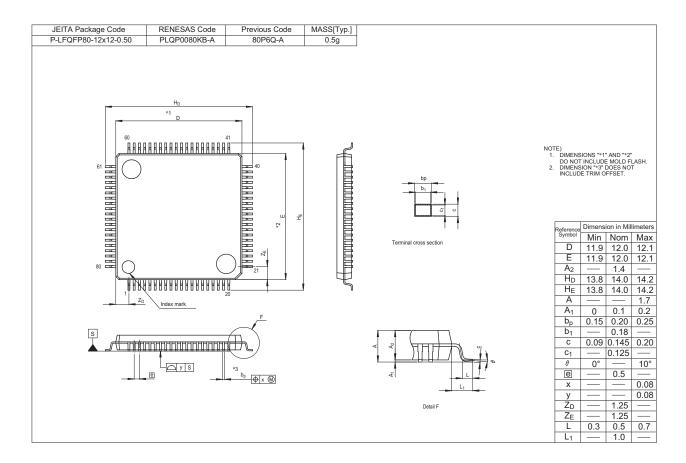
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μS
Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

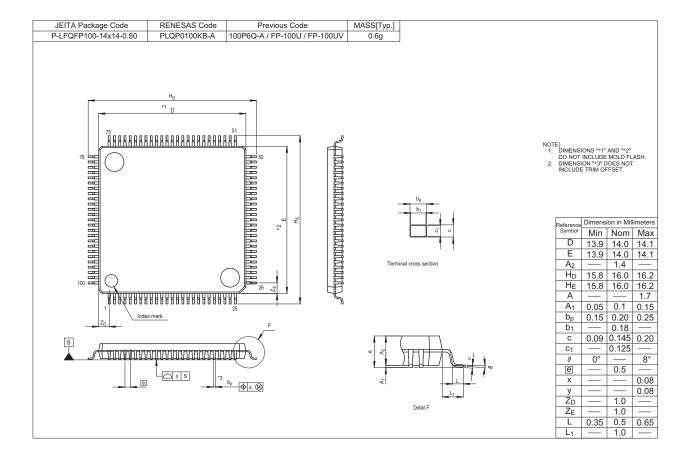
tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends


thd: Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)

RL78/L1A 3. PACKAGE DRAWINGS

3. PACKAGE DRAWINGS

3.1 80-pin products


R5F11MMDAFB, R5F11MMEAFB, R5F11MMFAFB

RL78/L1A 3. PACKAGE DRAWINGS

3.2 100-pin products

R5F11MPEAFB, R5F11MPFAFB, R5F11MPGAFB

REVISION HISTORY	RL78/L1A Datasheet
------------------	--------------------

Day	Dete		Description
Rev.	Date	Page	Summary
1.00	Aug 12, 2016	_	First Edition issued
1.10	Sep 30, 2019	p.2	Modification of 1.1 Features
		p.6	Modification of description in 1.4 Pin Identification
		p.7	Modification of block diagram in 1.5.1 80-pin products
		p.8	Modification of block diagram in 1.5.2 100-pin products
		p.12, 14	Modification of 2.1 Absolute Maximum Ratings
		p.17 to 20	Modification of 2.3.1 Pin characteristics
		p.28	Deletion of note 16 in 2.3.2 Supply current characteristics
		p.36	Modification of 2.5.1 (2) During communication at same potential (CSI mode) (master mode, SCKp internal clock output, corresponding CSI00 only)
		p.42	Modification of remarks 2 and 3 in 2.5.1 (5) During communication at same potential (simplified I ² C mode)
		p.59	Modification of 2.6.1 A/D converter characteristics
		p.60	Modification of table and addition of note in 2.6.1 A/D converter characteristics
		p.64	Addition of description in 2.6.4 Comparator
		p.65	Modification of 2.6.5 Rail to rail operational amplifier characteristics
		p.68	Modification of 2.6.7 Voltage reference
		p.68	Modification of 2.6.8 1/2 AVDD voltage output, and the location of this chapter has been moved.
		p.72	Addition of caution 2 in 2.7 Power supply voltage rising slope characteristics
		p.75	Modification of note 2 in 2.8.3 Capacitor split method
		p.77	Modification of 2.12 Timing Specs for Switching Modes

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4 Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited reet, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

9251 Yonge Street, St Tel: +1-905-237-2004

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Hong Kong Limited

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2019 Renesas Electronics Corporation. All rights reserved.