

Model 535 High Stability Clipped Sine TCXO

Features

- Fundamental Crystal Design
- Frequency Range 10 54MHz *
- Operating Voltage +3.3V
- Frequency Stability, Overall ±4.6ppm [-40°C to +85°C]
- Operating Temperature Range to -40°C to +105°C
- Voltage Control Option for Frequency Tuning [VCTCXO]
- Enable Function Option Available
- Tape and Reel Packaging, EIA-418

Applications

- 5G, 4G, LTE
- Femtocells, RRU, BBU
- Military Radio [Manpack]
- Inflight Entertainment

- Autonomous Technologies
- Synchronous Ethernet
- IP Networking
- Medical Imaging

- Stratum 3
- IEEE 1588 Timing

* Check with factory for availability of frequencies not listed.

- Wireless Communication
- Test and Measurement

Standard Frequencies - see Page 7 for common frequencies.

Description

CTS Model 535 is a high performance Temperature Compensated Crystal Oscillator [TCXO] suitable for applications requiring tight stability, Stratum 3 performance and more. Employing IC technology with Clipped Sine output and analog temperature compensation engine; coupled with a fundamental quartz crystal M535 has excellent stability and low jitter/phase noise performance.

Ordering Information

Notes:

1] Refer to document 016-1454-0, Frequency Code Tables. 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.

- 2] Frequency vs. Temperature only.
- 3] Available with stability code X2 and 05 only

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

DOC#008-0587-0 Rev. D

www.ctscorp.com

Page 1 of 7

©2017 CTS® Corporation. Information/product(s) subject to change. No warranty that product(s) will meet the stated specifications for customer specific applications or test equipment. Visit www.ctscorp.com for list of applicable patent(s), more information, or to request a quote.

RoH

om

Electrical Specifications

Operating Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Maximum Supply Voltage	V _{CC}	-	-0.5	-	4.6	V
Maximum Control Voltage	V _C	-	-0.3	-	V _{CC}	V
Supply Voltage	V _{CC}	±5%	3.14	3.3	3.47	V
Supply Current	I _{CC}	-	-	-	10	mA
Output Load	$R_L//C_L$	-	1	0k Ohm//10p	ρF	-
			-10		+70	
Operating Temperature	T _A	-	-40	+25	+85	°C
			-40		+105	
Storage Temperature	T _{STG}	-	-55	-	+125	°C

Frequency Stability

PARAMETER	SYMBOL	1BOL CONDITIONS		TYP	MAX	UNIT	
Frequency Range	f _o Frequency stability ±0.10ppm Frequency stability ±0.28ppm or ±0.50ppm			10 - 40		N4LI-	
				10 - 54		IVIHZ	
Frequency Stability		-10°C to +70°C & -40°C to +85°C					
Overall Frequency Stability	Ref	. f ₀ , 20 Years Aging, ±0.28ppm over -40°C to +85°C	-4.6	-	4.6	ppm	
Initial Calibration	$\Delta f/f_0$	Initial Calibration @ +25°C, At Time of Shipment	-0.9	-	0.9	ppm	
Temperature Only		[fmax - fmin]/2, Over Temperature Range		0.10, 0.28, 0.50		±ppm	
Voltage Coefficient	$\Delta f/f_{25}$	Supply Voltage, ±5%	-0.2	-	0.2		
Load Coefficient		Load, ±10%	-0.2	-	0.2	hhiii	
Aging	∧£/£	First Year @ +25°C, nominal V $_{CC}$ and V $_{C}$		-	1.0		
Aging	Δ1/125	20 Years @ +25°C, nominal V_{CC} and V_{C}	-3.0	-	3.0	ppm	
Frequency Stability		-40°C to +105°C					
Overall Frequency Stability	Ref. f	f ₀ , 20 Years Aging, ±0.28ppm over -40°C to +105°C	-4.7	-	4.7	ppm	
Initial Calibration	$\Delta f/f_{O}$	Initial Calibration @ +25°C, At Time of Shipment	-0.9	-	0.9	ppm	
Temperature Only		[fmax - fmin]/2, Over Temperature Range		0.28, 0.5		±ppm	
Voltage Coefficient	$\Delta f/f_{25}$	Supply Voltage, ±5%	-0.2	-	0.2	nnm	
Load Coefficient		Load, ±10%	-0.2	-	0.2	ppin	
Aging	∧£/£	First Year @ +25°C, nominal V_{CC} and V_{C}		-	1.0		
ARIIIR	ΔI/1 ₂₅	20 Years @ +25°C, nominal V $_{CC}$ and V $_{C}$	-3.0	-	3.0	hhiu	

DOC#008-0587-0 Rev. D

www.ctscorp.com

Electrical Specifications

Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Output Type	-	DC Coupled		Clipped Sine		
Output Voltage Levels	Vo	- 0.8 -		-	V _{p-p}	
Start Up Time	Ts	Application of V_{CC}	-	2	5	ms
Enable Function						
Enable Input Voltage	VIH	Pin 3Logic '1', Output Enabled	$0.8V_{CC}$	-	-	V
Disable Input Voltage	V _{IL}	Pin 3 Logic '0', Output Disabled	-	-	$0.2V_{CC}$	V
Disabled Current	I _{STB}	Pin 3 Logic '0', Output Disabled	-	-	3.5	mA
Enable Time	T _{PLZ}	Pin 3 Logic '1' -		-	5	ms
Phase Noise	-	See Typical Plots		-	-	

Control Voltage

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Control Voltage	V _C	V _{CC} = +3.3V	0.0	1.65	3.3	V
Frequency Tuning [VCTCXO Only]	$\Delta f/f_{O}$	Specified V_{C} Range		±5 to ±10		
Input Impedance	Z _{Vc}	-	100	100		
Linearity	L	Best Straight Line Fit	-	±5	±10	%
Transfer Function	-	-	Positive		-	

Test Circuit

Clipped Sine

Electrical Specifications

Performance Data

Phase Noise [typical]

50MHz, V_{CC} = +3.3V, T_A = +25°C

Mechanical Specifications

Package Drawing

Recommended Pad Layout

Pin Assignments

Pin	Symbol	Function
1	Vc	Voltage Control Note 1
2	-	Do Not Connect
3	EOH	Enable, Pin 3 [Optional] Note 2
4	GND	Circuit & Package
5	-	Do Not Connect
6	Output	Clipped Sine
7	-	Vcfilter
8	-	Do Not Connect
9	V _{CC}	Supply Voltage
10	-	Do Not Connect

Notes

- 1. Do not connect to Pin 1, if Voltage Control function is not used [TCXO].
- 2. Do not connect to Pin 3, if Output Enable function is not used.
- 3. Add $0.1\mu F$ capacitor between Pin 7 and ground.
- 4. DC-Cut Capacitor Required. Add 1000pF capacitor between TCXO output and input of load.

Table I - Month Code

MONTH	1	2	3	4	5	6	7	8	9	10	11	12
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
MONTH CODE	1	2	3	4	5	6	7	8	9	Х	Y	Ζ

DOC#008-0587-0 Rev. D

www.ctscorp.com

Page 5 of 7

Marking Information

- 1. xxxx Frequency Code, 4-digits. See Page 7.
- 2. – Pin 1 Identifier.
- 3. ** Manufacturing Site Code.
- 4. YM Date Code; Y year [last digit], M month. [See Table I for month codes.]
- 5. Area for Crystal Lot Code or Date Code.

Notes

- DO NOT make connections to non-labeled pins or castellations as they may have internal connections used in the manufacturing process.
- 2. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- Reflow conditions per JEDEC J-STD-020; +260°C maximum, 10 seconds.
- 4. MSL = 1.

Packaging - Tape and Reel

Reel Drawing

Notes

- 1. Device quantity is 500 pieces maximum per 180mm reel.
- 2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.

Addendum

Available Frequencies for Stability ±0.50ppm – MHz

FREQUENCY	ORDERING	MARKING	FREQUENCY	ORDERING	MARKING	FREQUENCY	ORDERING	MARKING
	CODE	CODE		CODE	CODE		CODE	CODE
10.000000	100	1000	38.880000	388	3888			
19.200000	192	1920	40.000000	400	4000			
20.000000	200	2000						
25.000000	250	2500						
38.400000	384	3840						

Available Frequencies for Stability ±0.28ppm - MHz

FREQUENCY	ORDERING CODE	MARKING CODE	FREQUENCY	ORDERING CODE	MARKING CODE	FREQUENCY	ORDERING CODE	MARKING CODE
10.000000	100	1000	38.880000	388	3888			
19.200000	192	1920	40.000000	400	4000			
20.000000	200	2000						
25.000000	250	2500						
38.400000	384	3840						

Available Frequencies for Stability ±0.10ppm - MHz

FREQUENCY	ORDERING CODE	MARKING CODE	FREQUENCY	ORDERING CODE	MARKING CODE	FREQUENCY	ORDERING CODE	MARKING CODE
10.000000	100	1000						
20.000000	200	2000						
25.000000	250	2500						