Power MOSFET 20 V, 5.1 A Single N-Channel, TSOP6

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- I_{DSS} Specified at Elevated Temperature
- Pb-Free Package is Available

Applications

- Power Management in portable and battery-powered products, i.e. computers, printers, PCMCIA cards, cellular and cordless
- Lithium Ion Battery Applications
- Notebook PC

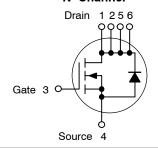
MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	V
Gate-to-Source Voltage	V _{GS}	±12	V
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (t _p < 10 μs)	R _{θJA} P _d I _D	244 0.5 2.5 10	°C/W W A A
Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (t _p < 10 μs)	R _{θJA} P _d I _D	128 1.0 3.6 14	°C/W W A A
Thermal Resistance Junction-to-Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (t _p < 10 μs)	R _{θJA} P _d I _D	62.5 2.0 5.1 20	°C/W W A A
Source Current (Body Diode)	Is	5.1	Α
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Maximum Lead Temperature for Soldering Purposes for 10 seconds	TL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. Minimum FR-4 or G-10PCB, operating to steady state.
- Mounted onto a 2" square FR-4 board (1" sq. 2 oz. cu. 0.06" thick single-sided), operating to steady state.
- Mounted onto a 2" square FR-4 board (1" sq. 2 oz. cu. 0.06" thick single-sided), t < 5.0 seconds.

1



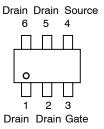
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
20 V	36 mΩ @ 4.5 V	5.1 A	

N-Channel

MARKING DIAGRAM



TSOP-6 CASE 318G STYLE 1

446 = Device Code W = Work Week

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3446T1	TSOP-6	3000/Tape & Reel
NTGS3446T1G	TSOP-6 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Ch	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Vo $(V_{GS} = 0 \text{ Vdc}, I_D = 0.25 \text{ mAdc})$ Temperature Coefficient (Positiv	V _{(BR)DSS}	20 -	_ 22	- -	Vdc mV/°C	
Zero Gate Voltage Collector Current (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc, T _J = 85°C)		I _{DSS}	- -	- -	1.0 25	μAdc
Gate-Body Leakage Current (V	$_{GS} = \pm 12 \text{ Vdc}, \text{ V}_{DS} = 0)$	I _{GSS(f)} I _{GSS(r)}	- -	_ _	100 -100	nAdc
ON CHARACTERISTICS (Note	4)					
Gate Threshold Voltage I _D = 0.25 mA, V _{DS} = V _{GS} Temperature Coefficient (Negative	V _{GS(th)}	0.6	0.85 -2.5	1.2 -	Vdc mV/°C	
Static Drain-to-Source On-Res $(V_{GS} = 4.5 \text{ Vdc}, I_D = 5.1 \text{ Adc} $ $(V_{GS} = 2.5 \text{ Vdc}, I_D = 4.4 \text{ Adc} $	R _{DS(on)}	- -	36 44	45 55	mΩ	
Forward Transconductance (V _{DS}	9FS	-	12	-	mhos	
DYNAMIC CHARACTERISTICS	3					
Input Capacitance		C _{iss}	-	510	750	pF
Output Capacitance	(V _{DS} = 10 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	-	200	350	
Transfer Capacitance	· ····,	C _{rss}	-	60	100	
SWITCHING CHARACTERISTIC	CS (Note 5)					
Turn-On Delay Time		t _{d(on)}	-	9.0	16	ns
Rise Time	(V _{DD} = 10 Vdc, I _D = 1.0 Adc,	t _r	-	12	20	
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ Vdc}, R_G = 6.0 \Omega$	t _{d(off)}	-	35	60	
Fall Time		t _f	-	20	35	
Gate Charge		Q_{T}	-	8.0	15	nC
	$(V_{DS} = 10 \text{ Vdc}, I_D = 5.1 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc})$	Q _{gs}	-	2.0	-	
		Q _{gd}	-	2.0	-	
SOURCE-DRAIN DIODE CHAF	RACTERISTICS					
Forward On-Voltage (Note 4)	$(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 85^{\circ}\text{C})$	V _{SD}	- -	0.74 0.66	1.1	Vdc
Reverse Recovery Time		t _{rr}	-	20	-	ns
	// 47A4. V 6V	t _a	-	11	_	1
	(I _S = 1.7 Adc, V _{GS} = 0 Vdc, di _S /dt = 100 A/μs)	t _b	-	9.0	_	1
Reverse Recovery Stored Charge		Q _{RR}	-	0.01	-	μС

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

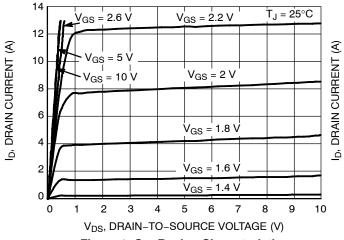


Figure 1. On-Region Characteristics

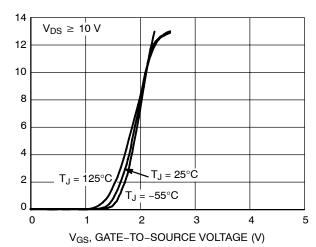


Figure 2. Transfer Characteristics

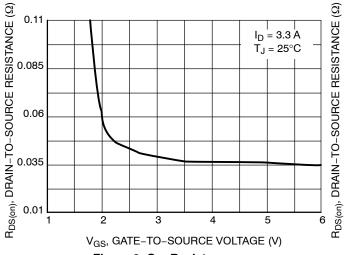


Figure 3. On-Resistance versus Gate-To-Source Voltage

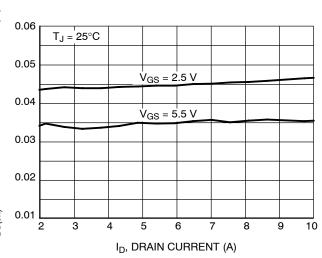


Figure 4. On-Resistance versus Drain Current and Gate Voltage

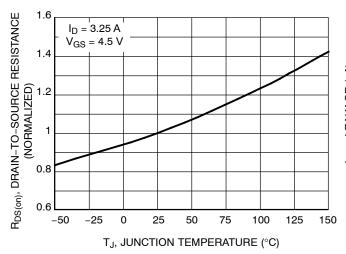


Figure 5. On–Resistance Variation with Temperature

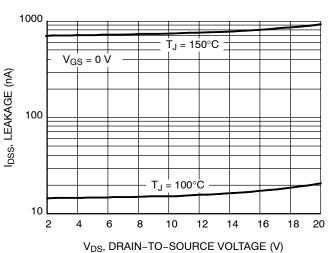
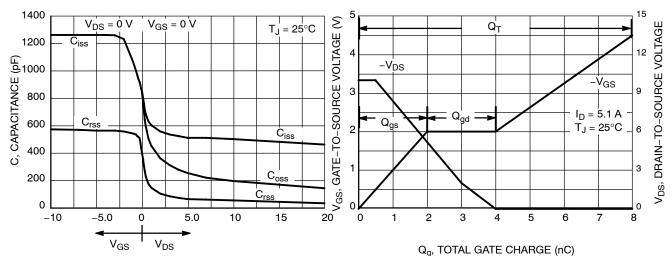



Figure 6. Drain-to-Source Leakage Current versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

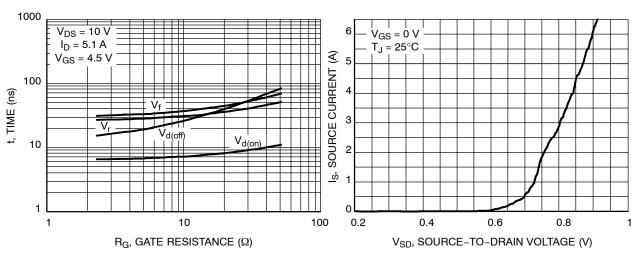


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus
Current

Δ1

STYLE 13: PIN 1. GATE 1

2. SOURCE 2

3. GATE 2

4. DRAIN 2

5. SOURCE 1

DRAIN 1

TSOP-6 CASE 318G-02 **ISSUE V**

12

C SEATING PLANE

DATE 12 JUN 2012

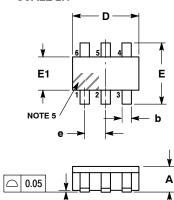
STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

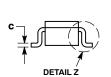
3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR

2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O

STYLE 12:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
- AND E1 ARE DETERMINED AT DATUM H.
 PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

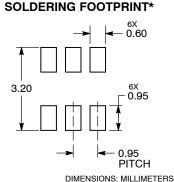

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.01	0.06	0.10	
b	0.25	0.38	0.50	
С	0.10	0.18	0.26	
D	2.90	3.00	3.10	
E	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0.85	0.95	1.05	
Ĺ	0.20	0.40	0.60	
L2	0.25 BSC			
М	Uo.		100	


STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1

STYLE 11:

BASE 1 6. COLLECTOR 2

PIN 1. SOURCE 1


DETAIL Z

Н

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. VZ 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+

. D(in)	2. DRAIN	2. GND	2. DRAIN 2
. D(in)+	SOURCE	D(OUT)-	3. DRAIN 2
. D(oút)+	4. DRAIN	4. D(IN)-	4. SOURCE 2
. D(out)	5. DRAIN	5. VBUS	5. GATE 1
. GND ´	HIGH VOLTAGE G	GATE 6. D(IN)+	DRAIN 1/GATE 2
14:	STYLE 15:	STYLE 16:	STYLE 17:
. ANODE	PIN 1. ANODE	PIN 1. ANODE/CATHODE	PIN 1. EMITTER
. SOURCE	2. SOURCE	2. BASE	2. BASE
. GATE	3. GATE	EMITTER	ANODE/CATHODE
. CATHODE/DRAIN	4. DRAIN	4. COLLECTOR	4. ANODE
. CATHODE/DRAIN	5. N/C	5. ANODE	CATHODE
. CATHODE/DRAIN	CATHODE	CATHODE	COLLECTOR

GENERIC MARKING DIAGRAM*

STYLE 14: PIN 1. ANODE

5.

3 GATE

RECOMMENDED

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

XXX = Specific Device Code

Α =Assembly Location Υ = Year

W = Work Week = Pb-Free Package XXX = Specific Device Code M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative