Description The 8V97053 is a high-performance Wideband RF Synthesizer / PLL optimized for use as the local oscillator (LO) in Multi-Carrier, Multi-mode FDD, and TDD Base Station radio card. It is offered in a compact 5×5 , 32-VFQFPN. The 8V97053 Wideband RF Synthesizer / PLL offers a default Fractional Mode with the option to use it with an Integer mode. It requires an external loop filter. The 8V97053 with integrated Voltage Controlled Oscillator (VCO) supports output frequencies from 34.375MHz to 4400MHz, and maintains superior phase noise and spurious performance. $RF_OUT_{[A:B]}$ output drivers have independently programmable output power ranging from -4dBm to +7dBm. The RF_OUT outputs can be muted. The mute function is accessible via a SPI command or mute pin. The operation of the 8V97053 is controlled by writing to registers through a 3-wire SPI interface. The 8V97053 has an additional option that allows users to read back values from registers by configuring the MUX_OUT pin as a SDO for the SPI interface. The SPI interface is compatible with 1.8V logic and is tolerant to 3.3V. In multi-service base stations, very low noise oscillators are required to generate a large variety of frequencies to the mixers while maintaining excellent phase noise performance and low power. The 8V97053 offers a large tuning range capable of providing multi-band local oscillator (LO) frequency synthesis in multi-mode base stations, thus limiting the use of multiple narrow band RF Synthesizers and reducing the BOM complexity and cost. The device can operate over -40°C to +85°C industrial temperature range. ## Typical Applications - Wireless infrastructure - Test equipment - CATV equipment - Military and aerospace - Wireless LAN - Clock generation #### **Features** - Dual Differential Outputs - Output frequency range: 34.375MHz to 4400MHz (continuous range) - RF Output Divide by 1, 2, 4, 8, 16, 32, 64 - Open Drain Outputs (see Output Clock Distribution) - Fractional-N synthesizer (also supports Integer-N mode) - 16-bit integer and 12-bit fractional (16-bit fractional when using the register 7) - 3- or 4-wire SPI interface (compatible with 3.3V and 1.8V) - Single 3.3V supply - Logic compatibility: 1.8V - Programmable output power level: -4dBm to +5dBm (up to +7 when using register 6) - Mute function - Ultra low PN for 1.65GHz LO: -142.08dBc/Hz at 1MHz Offset, (typical) - Lock Detect Indicators - Input reference frequency: 5MHz to 310MHz - Automatic VCO band selection (Autocal feature) - -40°C to +85°C ambient operating temperature - Supports case temperature ≤ 105°C operations - Lead-free (RoHS 6), 32-VFQFPN, 5 × 5 mm package # Block Diagram # Contents | Description | | |---|-----| | Typical Applications | . 1 | | Features | . 1 | | Block Diagram | . 2 | | Pin Assignments | . 5 | | Pin Descriptions | . 5 | | Absolute Maximum Ratings | . 7 | | DC Electrical Characteristics | | | AC Electrical Characteristics | | | Phase Noise (Open-Loop) at 730MHz (3.3V) | | | Phase Noise Performance (Open-Loop) at 1.1GHz (3.3V) | | | Phase Noise Performance (Open-Loop) at 1.65GHz (3.3V) | | | Phase Noise Performance (Open-Loop) at 2.3GHz (3.3V) | | | Phase Noise Performance (Open-Loop) at 3.8GHz (3.3V) | | | Phase Noise Performance (Open-Loop) at 4.4GHz (3.3V) | 17 | | Principles of Operation | | | Synthesizer Programming | 18 | | Reference Input Stage | 18 | | Reference Doubler | 18 | | Feedback Divider | | | Phase and Frequency Detector (PFD) and Charge Pump | | | PFD Frequency | | | External Loop Filter | | | Phase Detector Polarity | | | Charge Pump High-Impedance | | | Integrated Low Noise VCO | | | Output Clock Distribution | | | Output Matching | | | Band Selection Disable | | | Phase Adjust | | | Phase Resync | | | Fast Lock Function | | | RF Output Power | | | MUX_OUT | | | Power-Down Mode | | | Default Power-Up Conditions | | | Program Modes | | | Double Buffering | | | | 28 | | · · | 29 | | Register Map | | | Register 0 | | | Register 1 | | | Register 2 | | | Register 3 | | | Register 4 | | | Register 5 | | | Register 6 | 40 | | Register 7 |
 |
 | . 44 | |--|------|------|------| | Applications Information | | | | | Loop Filter Calculations |
 |
 | . 47 | | 2nd Order Loop Filter |
 |
 | . 47 | | 3rd Order Loop Filter |
 |
 | . 49 | | Recommendations for Unused Input and Output Pins |
 |
 | . 49 | | Inputs |
 |
 | . 49 | | Outputs |
 |
 | . 49 | | Schematic Example |
 |
 | . 50 | | Power Considerations |
 |
 | . 52 | | Reliability Information |
 |
 | . 53 | | Transistor Count | | | | | Package Outline Drawings |
 |
 | . 54 | | Marking Diagram |
 |
 | . 54 | | Ordering Information |
 |
 | . 54 | | Revision History |
 |
 | . 55 | # Pin Assignments Figure 1. Pin Assignments for 32-VFQFPN, 5 x 5 Package - Top View # Pin Descriptions Table 1. Pin Description[a] | Pin | Name | Туре | | Description | |-----|-----------|--------------|----------|---| | 1 | SCLK | LVCMOS Input | Pulldown | Serial Clock Input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. | | 2 | SDI | LVCMOS Input | Pullup | Serial Data Input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. | | 3 | nCS | LVCMOS Input | Pulldown | Load Enable. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. Active Low. | | 4 | CE | LVCMOS Input | Pullup | Chip Enable. On logic Low, powers down the device and puts the charge pump into High-Impedance mode. Powers up the device on logic High. | | 5 | FLSW | Analog | | Fast Lock Switch. A connection should be made from the loop filter to this pin when using the fast lock mode. | | 6 | V_CP | Power | | Charge Pump Power Supply. V_{CP} must have the same value as V_{DDA} . Place decoupling capacitors to the ground plane as close to this pin as possible. | | 7 | CP_OUT | Analog | | Charge Pump Output. When enabled, this output provides ±ICP to the external loop filter. The output of the loop filter is connected to V _{TUNE} to drive the internal VCO. | | 8 | GND_CP | Ground | | Charge Pump Power Supply Ground. | | 9 | GNDA | Ground | | Analog Power Supply Ground. | | 10 | V_{DDA} | Power | | Analog Supply. This pin ranges from 3.3V \pm 5%. $\rm V_{DDA}$ must have the same value as $\rm V_{DDD.}$ | Table 1. Pin Description^[a] (Cont.) | Pin | Name | Туре | | Description | |-----|----------------------|---------------|--------|---| | 11 | GNDA_VCO | Ground | | VCO Analog Power Supply Ground. | | 12 | RF_OUT _A | Output | | Clock Output pair A. The output level is programmable. | | 13 | nRF_OUT _A | Output | | Clock Output pair A. The output level is programmable. | | 14 | RF_OUT _B | Output | | Clock Output pair B. The output level is programmable. | | 15 | nRF_OUT _B | Output | | Clock Output pair B. The output level is programmable. | | 16 | V _{VCO} | Power | | VCO Supply. This pin ranges from 3.3V \pm 5%. V_{VCO} must have the same value as V_{DDA} . | | 17 | V _{VCO} | Power | | VCO Supply. This pin ranges from 3.3V \pm 5%. V_{VCO} must have the same value as V_{DDA} . | | 18 | GNDA_VCO | Ground | | VCO Analog Power Supply Ground. | | 19 | V _{BIAS} | Analog | | Place decoupling capacitors ($\geq 0.1 \mu F$) to ground, as close to this pin as possible. | | 20 | V _{TUNE} | | | Control Input to tune the VCO. | | 21 | GNDA_VCO | Ground | | VCO Analog Power Supply Ground. | | 22 | R _{CP} | Analog | | Sets the charge pump current. Requires external resistor. | | 23 | V _{COM} | Analog | | Place decoupling capacitors ($\geq 0.1 \mu F$) to ground, as close to this pin as possible. | | 24 | V _{REF} | Analog | | Place decoupling capacitors ($\geq 0.1 \mu F$) to ground, as close to this pin as possible. | | 25 | LD | LVCMOS Output | | Lock Detect. Logic High indicates PLL lock. Logic Low indicates loss of PLL lock. | | 26 | MUTE | LVCMOS Input | Pullup | RF_OUT _A and RF_OUT _B Power-Down. A logic low on this pin mutes the RF_OUT outputs and puts them in High-Impedance. | | 27 | GNDD | Ground | | Digital Power Supply Ground. | | 28 | V _{DDD} | Power | | Digital Supply. V _{DDD} must have the same value as V _{DDA} . | | 29 | REF_IN | LVCMOS Input | Analog | Reference Input. This CMOS input has a nominal threshold of $V_{DDA}/2$ and a DC equivalent input resistance of $100k\Omega$. This input can be driven from a TTL or CMOS crystal oscillator, or it can be AC-coupled. | | 30 | MUX_OUT | LVCMOS Output | | Multiplexed Output and Serial Data Out. Refer to Table 13. | | 31 | GND_SD | Ground | | Digital Sigma Delta Modulator Power Supply Ground. | | 32 | V _{DD_SD} | Power | | Digital Sigma Delta Modulator Supply. V_{DD_SD} must have the same value as V_{DDA} . | | EP | Exposed
Pad | Ground | | Must be connected to GND. | [[]a] Pullup and Pulldown refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values. Table 2. Pin Characteristics | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{in} | Input Capacitance | | | 4 | | pF | | R _{OUT} | LVCMOS Output Impedance | MUX_OUT and LD | | 38 | | Ω | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | Table 3. Supply Pins and Associated Current Return Paths | Power Supply Pin Number | Power Supply Pin Name | Associated Ground
Pin Number | Associated Ground Pin Name | |-------------------------|-----------------------|------------------------------|----------------------------| | 10 | V_{DDA} | 9 | GNDA | | 28 | $V_{ m DDD}$ | 27 | GNDD | | 32 | $V_{\mathrm{DD_SD}}$ | 31 | GND_SD | | 16, 17 | V _{VCO} | 11, 18, 21 | GNDA_VCO | | 6 | V_CP | 8 | GND_CP | # Absolute Maximum Ratings The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 8V97053 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 4. Absolute Maximum Ratings | Item | Rating | |--|---------------------------------| | Supply Voltage, V _{DDX} ^[a] | 3.63V | | Analog Supply Voltage, V _{DDA} | 3.63V | | Input, V _I | -0.5 to V _{DDA} + 0.5V | | REF_IN | | | Other Inputs (MUTE, SDI, FLSW, V _{TUNE}) | | | Outputs, V _O | -0.5 to V _{DDA} + 0.5V | | $RF_OUT_{A-B},nRF_OUT_{A-B}$ | | | Outputs, V _O (SCLK, LD, nCS, MUX_OUT) | -0.5 to V _{DDA} + 0.5V | | Outputs, I _O | | | Continuous Current | 40mA | | Surge Current | 65mA | | Outputs, I _O (SCLK, LD, nCS, MUX_OUT) | 8mA | | Continuous Current | 13mA | | Surge Current | | | Junction Temperature, T _J | 125°C | | Storage Temperature, T _{STG} | -65°C to 150°C | [[]a] V_{DDX} denotes V_{DDD} , V_{CP} , V_{DD_SD} , V_{VCO} . ### DC Electrical Characteristics Table 5. Power Supply DC Characteristics, $V_{DDX} = V_{DDA} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C^{[a]}$ [b] [c] | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|-----------------------|--|---------|---------|---------|-------| | V _{DDX} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDA} | Analog Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{DDX} [d] | Power Supply Current | | | 130 | 145 | mA | | | Analog Supply Current | RF_OUT _A / nRF_OUT _A - Active
RF_OUT _B / nRF_OUT _B - Muted | | 60 | 77 | mA | | I _{DDA} ^[e] | | RF_OUT _A / nRF_OUT _A - Active
RF_OUT _B / nRF_OUT _B - Active | | 85 | 105 | mA | | | | RF_OUT _A / nRF_OUT _A - Muted
RF_OUT _B / nRF_OUT _B - Muted | | 40 | 50 | mA | | I _{VCO} | VCO Supply Current | | | 85 | | mA | | | Power Down Mode | | | 10 | 15 | mA | [[]a] V_{DDX} denotes V_{DDD} , V_{CP} , V_{DD_SD} , V_{VCO} . Table 6. Output Divider Incremental Current^[a] | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-------------------------------|-----------------|---------|---------|---------|-------| | | Divide by 2 | | 8.0 | | mA | | | Divide by 4 | | 7.0 | | mA | | Output Dividor Supply Current | Divide by 8 | | 1.5 | | mA | | Output Divider Supply Current | Divide by 16 | | 1.5 | | mA | | | Divide by 32 | | 1.5 | | mA | | | Divide by 64 | | 1.5 | | mA | [[]a] RF Output divider (÷MO) has an incremental increase in current as the divider value increases. This specification is the incremental current change per output divider step. For example, current of divide-by-2 is 8mA more than divide-by-1, current of divide-by-4 is 7mA more than divide-by-2, and so on. The total increase from ÷1 to ÷64 is 8mA + 7mA + 1.5mA + 1.5mA + 1.5mA + 1.5mA = 21mA. [[]b] RF Outputs Terminated $50\Omega \pm 1\%$ to V_{DDA} [[]c] Output Power set to +2dBm. [[]d] I_{DDX} denotes $I_{DDD} + I_{CP} + I_{DD_SD} + I_{VCO}$. [[]e] I_{DDA} is dependent on the value of the M0 output divider. The numbers indicated for I_{DDA} show the current consumption when using the output divider M0 = 64, for which I_{DDA} is higher than when using any other M0 divider value. Table 7. Typical Current by Power Domain^[a] | Pin Name | Pin Number | Typical Current | Units | |--------------------|------------|-----------------|-------| | V_CP | 6 | 24 | mA | | V _{VCO} | 16, 17 | 22 | mA | | V_{DDD} | 28 | 0.8 | mA | | V _{DD_SD} | 32 | 9 | mA | | V _{DDA} | 10 | 63 | mA | [[]a] Operating conditions are: REF_IN = 25MHz, INT = 100 (integer mode), RF Divider = \div 1, RF_OUT_A = RF_OUT_B = 2.5GHz, RF_{POWER} = -1dBm, Charge Pump = 0.31mA Table 8. LVCMOS DC Characteristics, $V_{DDX} = V_{DDA} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C^{[a]}$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------|-------------------|---|------------------------|---------|-----------|-------| | | | MUTE, CE | | 1.8 | | V_{DDx} | V | | V _{IH} | Input High Voltage | SDI, SCLK,
nCS | | 1.5 | | V_{DDx} | V | | V _{IL} | Input Low Voltage | | | -0.3 | | 0.6 | V | | L | Input High Current | SDI, MUTE, CE | V _{DDx} = 3.465V, V _{IN} = 1.8V | | | 5 | μΑ | | I _{IH} | input riigii Guireiit | SCLK, nCS | $V_{DDx} = 3.465V, V_{IN} = 1.8V$ | | | 150 | μΑ | | L. | Input Low Current | SDI, MUTE, CE | $V_{DDx} = 3.465V, V_{IN} = 0V$ | -150 | | | μΑ | | IIL | input Low Guitein | SCLK, nCS | $V_{DDx} = 3.465V, V_{IN} = 0V$ | -5 | | | μΑ | | V _{OH} | Output High Voltage | MUX_OUT, LD | $V_{DDx} = 3.465V; I_{OH} = -500\mu A$ | V _{DDX} - 0.4 | | | V | | V _{OL} | Output Low Voltage | MUX_OUT, LD | $V_{DDx} = 3.465V; I_{OL} = 500\mu A$ | | | 0.4 | V | [[]a] V_{DDX} denotes V_{DDD} , $V_{_CP}$, V_{DD_SD} , V_{VCO} . ### **AC Electrical Characteristics** Table 9. AC Characteristics, $V_{DDX} = V_{DDA} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C^{[a]}$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------|--|------------|--|---------|-----------|-----------|-------| | REF IN | Input Reference Frequency ^[b] | | Ref Doubler Disabled | 5 | | 310 | MHz | | KEF_IIN | | | Ref Doubler Enabled | 5 | | 100 | MHz | | V _{PP} | Input Sensitivity | REF_IN | Biased at V _{DDA} /2 ^[c] | 0.7 | | V_{DDA} | V | | f _{VCO} | VCO Frequency | | Fundamental VCO Mode | 2200 | | 4400 | MHz | | f _{RF_OUT} | Output Frequency | | Divider Values: 1, 2, 4, 8, 16, 32, 64 | 34.375 | | 4400 | MHz | | f | DED Esseueneu | | Fractional Mode | | | 125 | MHz | | f _{PFD} | PFD Frequer | icy | Integer Mode | | | 310 | MHz | | K _{VCO} | VCO Sensitiv | vity | | | 60 | | MHz/V | | t _{LOCK} | PLL Lock Time | | Time from Low to High nCS until at Normal Mode, Low to High LD | | 250 | | μs | | - | Output Power Variation | | | | ±1 | | dB | | - | RF Output Power | | Muted, (M0 ≠ 1) | | < -80 | | dBm | | - | Min/Max VCO Tunir | ng Voltage | | | 0.5 / 2.5 | | V | [[]a] V_{DDX} denotes V_{DDD} , V_{CP} , V_{DD_SD} , V_{VCO} . Table 10. RF_OUT_[A:B] Phase Noise and Jitter Characteristics, $V_{DDX} = V_{DDA} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C^{[a]}$ [b] | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|---|------------------------------------|---------|---------|---------|--------| | φ _N (100k) | | 100kHz Offset from Carrier | | -124.75 | | dBc/Hz | | φ _N (800k) | | 800kHz Offset from Carrier | | -147.14 | | dBc/Hz | | φ _N (1M) | RF Output Phase Noise Performance | 1MHz Offset from Carrier | | -148.72 | | dBc/Hz | | φ _N (5M) | at 730MHz (Open Loop) | 5MHz Offset from Carrier | | -154.56 | | dBc/Hz | | φ _N (10M) | | 10MHz Offset from Carrier | | -155.59 | | dBc/Hz | | φ _N (∞) | | Noise Floor (≥ 30MHz from Carrier) | | -156 | | dBc/Hz | | φ _N (100k) | | 100kHz Offset from Carrier | | -115.11 | | dBc/Hz | | φ _N (800k) | | 800kHz Offset from Carrier | | -137.79 | | dBc/Hz | | φ _N (1M) | RF Output Phase Noise Performance at 1.1GHz (Open Loop) | 1MHz Offset from Carrier | | -139.94 | | dBc/Hz | | φ _N (5M) | | 5MHz Offset from Carrier | | -152.11 | | dBc/Hz | | φ _N (10M) | | 10MHz Offset from Carrier | | -154.5 | | dBc/Hz | | φ _N (∞) | | Noise Floor (≥ 30MHz from Carrier) | | -156 | | dBc/Hz | [[]b] For REF_IN < 10MHz, the slew rate must be > $21V/\mu s$. [[]c] AC-coupling: the device provides an internal $V_{DDA}/2$ bias. Table 10. RF_OUT_[A:B] Phase Noise and Jitter Characteristics, $V_{DDX} = V_{DDA} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to 85°C[a] [b] (Cont.) | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|--|---|---------|---------|---------|--------| | φ _N (100k) | | 100kHz Offset from Carrier | | -115.57 | | dBc/Hz | | φ _N (800k) | | 800kHz Offset from Carrier | | -139,83 | | dBc/Hz | | φ _N (1M) | RF Output Phase Noise Performance | 1MHz Offset from Carrier | | -142.08 | | dBc/Hz | | φ _N (5M) | at 1.65GHz (Open Loop) | 5MHz Offset from Carrier | | -152.36 | | dBc/Hz | | φ _N (10M) | ` , , , , , , , , , , , , , , , , , , , | 10MHz Offset from Carrier | | -153.62 | | dBc/Hz | | φ _N (∞) | | Noise Floor (≥ 30MHz from Carrier) | | -153.81 | | dBc/Hz | | φ _N (100k) | | 100kHz Offset from Carrier | | -109 | | dBc/Hz | | φ _N (800k) | | 800kHz Offset from Carrier | | -132.18 | | dBc/Hz | | φ _N (1M) | RF Output Phase Noise Performance | 1MHz Offset from Carrier | | -134.37 | | dBc/Hz | | φ _N (5M) | at 2.3GHz (Open Loop) | 5MHz Offset from Carrier | | -148.66 | | dBc/Hz | | φ _N (10M) | · · · · · · · · · · · · · · · · · · · | 10MHz Offset from Carrier | | -152.86 | | dBc/Hz | | φ _N (∞) | | Noise Floor (≥ 30MHz from Carrier) | | -154.85 | | dBc/Hz | | φ _N (100k) | | 100kHz Offset from Carrier | | -104.7 | | dBc/Hz | | φ _N (800k) | | 800kHz Offset from Carrier | | -128.95 | | dBc/Hz | | φ _N (1M) | RF Output Phase Noise Performance | 1MHz Offset from Carrier | | -131.27 | | dBc/Hz
 | φ _N (5M) | at 3.8GHz (Open Loop) | 5MHz Offset from Carrier | | -146.09 | | dBc/Hz | | φ _N (10M) | | 10MHz Offset from Carrier | | -150.17 | | dBc/Hz | | φ _N (∞) | | Noise Floor (≥ 30MHz from Carrier) | | -154 | | dBc/Hz | | φ _N (100k) | | 100kHz Offset from Carrier | | -101.72 | | dBc/Hz | | φ _N (800k) | | 800kHz Offset from Carrier | | -126.78 | | dBc/Hz | | φ _N (1M) | RF Output Phase Noise Performance | 1MHz Offset from Carrier | | -129.23 | | dBc/Hz | | φ _N (5M) | at 4.4GHz (Open Loop) | 5MHz Offset from Carrier | | -145.21 | | dBc/Hz | | φ _N (10M) | , | 10MHz Offset from Carrier | | -149.97 | | dBc/Hz | | φ _N (∞) | | Noise Floor (≥ 30MHz from Carrier) | | -152.1 | | dBc/Hz | | - | Spurious Signals
Due to PFD Frequency | f _{PFD} = 50MHz;
RF_OUT _A = 2.2GHz | | -74 | | dBc | [[]a] V_{DDX} denotes V_{DDD} , V_{CP} , V_{DD_SD} , V_{VCO} . 11 [[]b] $RF_OUT_{[A:B]}$ output power setting = +2dBm. # Phase Noise (Open-Loop) at 730MHz (3.3V) # Phase Noise Performance (Open-Loop) at 1.1GHz (3.3V) # Phase Noise Performance (Open-Loop) at 1.65GHz (3.3V) # Phase Noise Performance (Open-Loop) at 2.3GHz (3.3V) # Phase Noise Performance (Open-Loop) at 3.8GHz (3.3V) # Phase Noise Performance (Open-Loop) at 4.4GHz (3.3V) ## Principles of Operation #### Synthesizer Programming The Fractional-N architecture is implemented via a cascaded programmable dual modulus prescaler. The N divider offers a division ratio in the feedback path of the PLL, and is given by programming the value of INT, FRAC and MOD in the following equation: $$N = INT + FRAC/MOD(1)$$ INT is the divide ratio of the binary 16-bits counter (see Table 18). FRAC is the numerator value of the fractional divide ratio. It is programmable from 0 to (MOD – 1). Refer to Table 19 when in 12-bit mode, or Table 83 when in 16-bit mode. MOD is the 12-bit or 16-bit modulus. It is programmable from 2 to 4095 in 12-bit mode, and 2 to 65535 in 16-bit mode. Refer to Table 24 when in 12-bit mode, or Table 82 when in 16-bit mode. The VCO frequency (f_{VCO}) at RF_OUT_A or RF_OUT_B is given by the following equation: $$f_{VCO} = f_{PFD} \times (INT + FRAC/MOD)(2)$$ f_{PFD} is the frequency at the input of the Phase and Frequency Detector (PFD). The 8V97053 offers an Integer mode. To enable that mode, the user has to program the FRAC value to 0. The device's VCO features three VCO band-splits to cover the entire range with sufficient margin for process, voltage, and temperature variations. These are automatically selected by invoking the Autocal feature. The charge pump current is also programmable via the ICP SETTING register for maximum flexibility. Via Register 4, one can enable RF_OUT_A or both outputs. Similarly, one can disable RF_OUT_B or both outputs. ## Reference Input Stage The 8V97053 features one single-ended reference clock input (REF_IN). This single-ended input can be driven by an ac-coupled sine wave or square wave. In Power Down mode this input is set to High-Impedance to prevent loading of the reference source. The reference input signal path also includes an optional doubler. #### Reference Doubler To improve the phase noise performance of the device, the reference doubler can be used. By using the doubler, the PFD frequency is also doubled and the phase noise performance typically improves by 3dB. When operating the device in Fractional mode, the speed of the Sigma Delta modulator of the N counter is limited to 125MHz, which is also the maximum PFD frequency that can be used in the fractional mode. When the part operates in Integer-N mode, the PFD frequency is limited to 310MHz. - 1. The user has the possibility to select a higher PFD frequency (up to 310MHz in Integer mode) by doing the following steps using registers 6 and 7. - 2. The user needs to increase the size of the Band Select Clock Divider (normally 8-bits) by setting the bit [D6:D3] in the Register 6 to divide down to a frequency lower than 500kHz and higher than 125kHz. Use the Bit[D27:D26] to increase the lock detect precision for the faster PFD frequency. The Lock Detect window should be set as large as possible but less than a period of the phase detector. The phase detector frequency should be greater than 500kHz. Table 11. Lock Detect Precision (LDP) | LDP_Ext2
(D27 of Register 6) | LDP_Ext1
(D26 of Register 6) | LDP
(D7 of Register 2) | LDP value (ns) | | | | | | | | | |---------------------------------|---------------------------------|---------------------------|----------------|--|--|--|--|--|--|--|--| | 0 | 0 | 0 | 10 | | | | | | | | | | 0 | 0 | 1 | 6 | | | | | | | | | | Use of Register 6 | | | | | | | | | | | | | 0 | 1 | 0 | 3 | | | | | | | | | | 0 | 1 | 1 | 3 | | | | | | | | | | 1 | 0 | 0 | 4 | | | | | | | | | | 1 | 0 | 1 | 4.5 | | | | | | | | | | 1 | 1 | 0 | 1.5 | | | | | | | | | | 1 | 1 | 1 | 1.5 | | | | | | | | | #### Feedback Divider The feedback divider N supports fractional division capability in the PLL feedback path. It consists in an integer N divider of 16 bits, and a Fractional divider of 12 bits (FRAC) over 12-bits (MOD). FRAC and MOD can be extended to 16 bits when using register 7. To select an integer mode only, the user sets FRAC to 0. Figure 2. RF Feedback N Divider The 16 INT bits (Bit[D30:D15] in Register 0) set the integer part of the feedback division ratio. The 12 FRAC bits (Bit[D14:D3] in Register 1) set the numerator of the fraction that goes into the Sigma Delta modulator. FRAC can be extended to 16 bits using the EXT FRAC bits in Register 7. The 12 MOD bits (Bit[D14:D3] in Register 1) set the denominator of the fraction that goes into the Sigma Delta modulator. MOD can be extended to 16 bits using the EXT_MOD bits in Register 7. From the relation (2), the VCO minimum step frequency is determined by (1/MOD) * f_{PFD} FRAC values from 0 to (MOD – 1) cover channels over a frequency range equal to the PFD reference frequency. The PFD frequency is calculated as follows: (3) $$f_{PFD} = REF_{CLK} \frac{1+D}{R}$$ Use 2R instead of R if the Reference Divide by 2 is used. REF_{CLK} = the input reference frequency (REF_IN) D = the input reference doubler (0 if not active or 1 if active) R = the 10-Bits programmable input reference pre-divider The programmable modulus (MOD) is determined based on the input reference frequency (REF_IN) and the desired channelization (or output frequency resolution). The high resolution provided on the R counter and the Modulus allows the user to choose from several configuration (by using the doubler or not) of the PLL to achieve the same channelization. Using the doubler may offer better phase noise performance. The high resolution Modulus also allows to use the same input reference frequency to achieve different channelization requirements. Using a unique PFD frequency for several needed channelization requirements allows the user to design a loop filter for the different needed setups and ensure the stability of the loop. The channelization is given by $\frac{f_{PFD}}{MOD}$ (4 In low noise mode (dither disabled), the Sigma Delta modulator can generate some fractional spurs that are due to the quantization noise. The spurs are located at regular intervals equal to f_{PFD}/L where L is the repeat length of the code sequence in the Sigma Delta modulator. That repeat length depends on the MOD value, as described in Table 12. Table 12. Fractional Spurs Due to the Quantization Noise | Condition (Dither Disabled) | L | Spur Intervals | |---------------------------------------|----------------|---| | MOD can be divided by 2, but not by 3 | 2 × MOD | f _{PFD} /(2*MOD) | | MOD can be divided by 3, but not by 2 | $3 \times MOD$ | f _{PFD} /(3*MOD) | | MOD can be divided by 6 | 6 × MOD | f _{PFD} /(6*MOD) | | Other conditions | MOD | f _{PFD} /MOD
(channel step) | In order to reduce the spurs, the user can enable the dither function to increase the repeat length of the code sequence in the Sigma Delta modulator. The increased repeat length is 2^{21} cycles so that the resulting quantization error is spread to appear like broadband noise. As a result, the in-band phase noise may be degraded when using the dither function. When the application requires the lowest possible phase noise and when the loop bandwidth is low enough to filter most of the undesirable spurs, or if the spurs won't affect the system performance, it is recommended to use the low noise mode with dither disabled. ### Phase and Frequency Detector (PFD) and Charge Pump The phase detector compares the outputs from the R counter and from the N counter and generates an output corresponding to the phase and frequency difference between the two inputs the PFD. The charge pump current is programmable through the serial port (SPI) to several different levels. The PFD offers an anti-backlash function that helps to avoid any dead zone in the PFD transfer function. Figure 3. Simplified PFD Circuit using D-type Flip-flop The Band Select logic operates between 125kHz and 500kHz. The Band Select clock divider needs to be set to divide down the PFD frequency to between 125kHz to 500kHz (logic maximum frequency). ## PFD Frequency The VCO Band Selection can be used while operating at PFD frequencies up to 310MHz. If the application requires the PFD frequency to be higher than 125MHz, the user can use one of the following two techniques (Technique A is the recommended procedure): - Technique A The user can use the ExtBndSelDiv[4:1] bits (Bits[D6:D3]) in Register 6. These additional band select divider bits extend the band select divider from 8-bits (available in Register 4) to 12-bits. The four additional band select divider bits in Register 4 are the most significant bits of the divide value. For proper VCO band selection, the PFD frequency divided by the band select divide value must be ≤ 500kHz and ≥ 125kHz. - Technique B If choosing this second technique, the user must follow the three following steps: Disable the
Phase Adjust function by setting the bit D28 In Register 1 to 0, keep the PFD frequency lower than 125MHz, and program the desired VCO frequency. Enable the phase adjust function by setting BAND_SEL_DISABLE (Bit D28 in Register 1) to 1. Set the desired PFD frequency and program the relevant R divider and N counter values. In either technique, the Lock Detect Precision should be programmed to be lower than the PFD period using the bit [D7] in Register 2 and the bits [D27:D26] in Register 6 (see Table 11). #### External Loop Filter The 8V97053 requires an external loop filter. The design of that filter is application specific. For additional information, refer to the Applications Information. ### Phase Detector Polarity The phase detector polarity is set by bit D6 in Register 2. This bit should be set to 1 when using a passive loop filter or a non-inverting active loop filter. If an inverting active filter is used, this bit should be set to 0. ### Charge Pump High-Impedance In order to put the charge pump into three-state mode, the user must set the bit D4 [CP HIGHZ] in Register 2 to Register 1. This bit should be set to 0 for normal operation. ### Integrated Low Noise VCO The VCO function of the 8V97053 consists in three separate VCOs. This allows keeping narrow tuning ranges for the VCOs while offering a large frequency tuning range for VCO core. Keeping narrow VCO tuning ranges allows for lower VCO sensitivity (K_{VCO}), which results in the best possible VCO phase noise and spurious performance. The user does not have to select the different VCO bands. The VCO band select logic of the 8V97053 will automatically select the most suitable band of operation at power up or when Register 0 is written. ### **Output Clock Distribution** The 8V97053 device provides two outputs. These two outputs can generate the same frequency (f_{VCO} / M0) or two integer related different frequencies (in this case, RF_OUT_B would generate a frequency equal to the VCO frequency and RF_OUT_A would generate f_{VCO} / M0). Figure 4. Output Clock Distribution RF_OUT and nRF_OUT are derived from the drain of an NMOS differential pair driven by the VCO output (or by the M0 Divider), as shown in Figure 5. Figure 5. Output Stage Eight programmable output power levels can be programmed from -4dBm to +7dBm (see RF Output Power). The 8V97053 offers an auxiliary output (RF_OUT_B). If the auxiliary output stage is not used, it can be powered down by using the RF_OutB_En bit in Register 4. The supply current to the output stage can be shut down until the part achieves lock. To enable this mode, the user will set the MTLD bit in Register 4. The MUTE pin can be used to mute all outputs and be used as a similar function. #### **Output Matching** The outputs of the 8V97053 are Open Drain Output and can be matched in different ways. A simple broadband matching is to terminate the open drain RF_OUT output with, for example, a 50Ω to V_{DDA} , and with an AC coupling capacitor in series. An example of this termination scheme is shown on Figure 6. Figure 6. Broadband Matching Termination This termination scheme allows to provide one of the selected output power on the differential pair when connected to a 50Ω load. (See the RF Output Power for more information about the output power selection). The 50Ω resistor connected to V_{DDA} can also be replaced by a choke, for better performance and optimal power transmission. Figure 7. Optimal Matching Termination The pull up inductor value is frequency dependent. For impedance of 50Ω pull-up, the inductance value can be calculated as L = 50/(2*3.14*F), where F is operating frequency. In this example, L = 3.9nH is for an operating frequency of approximately 2GHz. For more recommendations on the termination scheme, see Applications Information. #### Band Selection Disable For a given frequency, the output phase can be adjusted when using the Band_Sel_Disable bit (Bit D28 in Register 1). When this bit is enabled (Bit D28 set to 1), the part does not do a VCO band selection or phase resync after an update to Register 0. When the Band_Sel_Disable bit is set to 0, and when Register 0 is updated, the part proceeds to a VCO band selection, and to a phase resync if phase_resync is also enabled in Register 3 (Bits[D16:D15] set to D16 = 1 and D15 = 0). The "Band_Sel_Disable" bit is useful when the user wants to make small changes in the output frequency (<1MHz from the nominal frequency) without recalibrating the VCO and minimizing the settling time. #### Phase Adjust The output phase is controlled by the 12-bit phase value Bits[D26:D15] in Register 1. The output phase can vary over 360° with a 360°/MOD step. For dynamic adjustments of the phase after an initial phase setting, it is recommended to select the BAND_SEL_DISABLE function by setting the Band_Sel_Disable bit (D28 in Register 1) to 1. #### Phase Resync The phase alignment function operates based on adjusting the "fractional" phase, so the phase can settle to any one of the MOD phase offsets, MOD being the modulus of the fractional feedback divider. The phase adjustment can provide a 0-360° of phase adjust, assuming that the output divider ratio is set to 1. The phase step is TVCO/MOD for the normal case of fundamental feedback. TVCO is the period of the VCO. The feedback select bit (FbkSel bit, Bit D23 in Register 4) gives the choices of fundamental feedback or divided feedback. This bit controls the mux that sends the VCO signal or the output divider signal to the feedback loop. The user can get larger phase steps in the divided mode, but the phase noise may be degraded, especially in fractional mode. Should the user select this option, the phase adjustment step would be $\sim T_{OUT}/MOD$, where T_{OUT} is the output signal period. When the part is in fractional mode, the device is dithering the feedback divider value. As an example, when using a 4GHz VCO frequency, the feedback divider value may dither between Div-by-20 and Div-by-21. Since the period is 250ps, there will be 250ps of jitter added to the phase detector. This jitter is filtered by the loop, but can still show up at the output if the loop bandwidth is high. When using a divider before the feedback divider, the effective VCO period is increased. If a Div-by-64 is used for example, the period becomes 64x250ps = 16ns. This means that there could be an additional 16ns of jitter at the PFD, rather than 250ps. It is more challenging for the loop to filter this larger amount of jitter and this will degrade the overall performance of the part, unless the user chooses to use a very low loop bandwidth. With normal loop bandwidth configurations (for optimal noise), the phase noise would be degraded when using a divided feedback mode. The Phase Resync is controlled by setting Bits[D16:D15] in Register 3 to D16 = 1 and D15 = 0. When phase resync is used, an internal timer generates sync signals every T_{SYNC} where: $$T_{SYNC} = ClkDiv \times MOD \times T_{PFD}$$ (5) ClkDiv = the value (from 1 and 4095) programmed in the 12-bit clock counter in Bits[D14:D3] in Register 4. The 12-bit counter is used as a timer for Fast Lock and for the Phase Resync function. MOD = the Modulus value (Bits[D14:D3] of Register 1) T_{PFD} = the PFD period In Equation 5, the minimum of either MOD value or 4095 is used for calculating T_{SYNC} when in 16-bit mode. Figure 8. 12-bit Counter for Fast Lock and Phase Resync After the user program a frequency, the second sync pulse coming from the 12-bit counter, after the nCS is asserted high, is used to resynchronize the output phase to the input phase. To ensure that the PLL is locked before to resynchronize the output phase, TSYNC must be larger than the worst case lock time. #### Fast Lock Function The device uses a fast-lock mode to decrease lock time. In order to allow the Fast Lock mode, the Fast Lock Switch (FLSW) is shorted to Ground and the charge pump current (ICP) is changed temporarily until the Fast Lock mode is disabled. The loop bandwidth needs to be increased temporarily in order to allow a faster lock time. By doing this, the loop filter needs to be initially designed so that it addresses the risk of instability of having the zero and the poles too close to the actual bandwidth knee, when the user switches to a fast lock mode. The loop bandwidth is proportional to: RS and ICP (BW ~ RS * ICP) Where: BW = The loop bandwidth RS = The damping resistor ICP = The programmable charge pump current In order to enable the fast lock mode, the charge pump current is increased to the maximum value in order to increase the loop bandwidth. In parallel, the FLSW filter is set to ON so that the RS value is ¼ of its initial value in order to maintain the loop stability. By doing so, the zero and the first pole are moved (by a factor of 4x in the example below), so that the zero and the pole are kept at a suitable distance around the loop bandwidth. Figure 9. Example of Fast Lock Mode Loop Filter Topology In the example of Figure 9, the damping resistor RS is equal to: RS1 + RS2 in normal mode (FSLW switch OFF), with RS2 = 3 * RS1 When the FLSW switch is ON, the damping resistor value is reduced by ¼ of its initial value (RS = RS1). The second pole defined by R3 and C3 need needs to be designed so that there is no risk of instability when widening the loop bandwidth. #### RF Output Power For RF_OUT_A and RF_OUT_B, the output power can be programmed from -4dBm to +7dBm. Refer to Table 50, Table 52, Table 61 and Table 62 in the Register Map section for more information. #### MUX_OUT MUX_OUT is a multipurpose output that can be programmed to provide the user with some internal status and values for test and debugging purpose. In addition, MUX_OUT can also be programmed to provide an additional Serial Data Out Pin for a 4-wire SPI interface when needed. The MUX_OUT function is described in the Table 13 and can be programmed in Bits[D28:D26]
in Register 2. Table 13. MUX_OUT Pin Configuration | MUX_OUT Register Value | MUX_OUT Function | |------------------------|---------------------------| | 000 | High-Impedance Output | | 001 | V _{DDD} | | 010 | GNDD | | 011 | R Counter Output | | 100 | N counter Output | | 101 | Reserved | | 110 | Lock Detect | | 111 | MUX_OUT configured as SDO | #### Power-Down Mode When power-down is activated, the following events occur: - 1. Counters are forced to their load state conditions - 2. VCO is powered down - 3. Charge pump is forced into three-state mode - 4. Digital lock detect circuitry is reset - 5. RF OUT buffers are disabled - 6. The input stage is powered down and set to High-Impedance - 7. Input registers remain active and capable of loading and latching data #### **Default Power-Up Conditions** All the RF outputs are muted at power up until the loop is locked. For default values in registers, see the Register Map. #### **Program Modes** Table 14 and the Register Map indicate how the program modes are set up in the 8V97053. Table 14. Control Bits Configuration | (| Control Bits (CB | | | | | | | |----|------------------|--------------|------------|--|--|--|--| | C3 | C2 | C1 | Register | | | | | | 0 | 0 | 0 | Register 0 | | | | | | 0 | 0 | 1 Register 1 | | | | | | | 0 | 1 | 0 | Register 2 | | | | | | 0 | 1 | 1 | Register 3 | | | | | | 1 | 0 | 0 | Register 4 | | | | | | 1 | 0 | 1 | Register 5 | | | | | | 1 | 1 | 0 | Register 6 | | | | | | 1 | 1 | 1 | Register 7 | | | | | ## **Double Buffering** The following bits are Doubled Buffered: - 1. PHASE (Bits[D26:D15] in Register 1) - 2. MOD (Bits[D14:D3] in Register 1) - 3. REF DOUBLER (Bit D25 in Register 2) - 4. REF DIV2 (Bit D24 in Register 2) - 5. R COUNTER (Bits[D23:D14] in Register 2) - 6. ICP SETTING (Bits[D12:D9] in Register 2) The user must proceed to the following steps before any value written in these bits are used. - 1. The new values are written in the double buffered bits - 2. A new Write is performed on Register 0 The RF DIVIDER value in Register 4 (Bits[D22:D20]) is also double buffered, but only if the DOUBLE BUFFER bit (Bit D13 in Register 2) is set to 1. # **Timing Characteristics** Figure 10. SPI Write Cycle Timing Diagram Figure 11. SPI Read Cycle Timing Diagram Table 15. SPI Read / Write Cycle Timing Parameters | Symbol | Parameter | Minimum | Maximum | Units | |------------------|-----------------------------|---------|---------|-------| | f _{CLK} | SCLK Frequency | | 20 | MHz | | t _{SU} | nCS, SDI Setup Time to SCLK | 10 | | ns | | t _H | SCLK to nCS, SDI Hold Time | 10 | | ns | | t_{LO} | SCLK Low Pulse Width | 25 | | ns | | t _{HI} | SCLK High Pulse Width | 25 | | ns | | t _{PW} | nCS De-asserted Pulse Width | 20 | | ns | # 3- or 4-Wire SPI Interface Description The 8V97053 has a serial control port capable of responding as a slave in an SPI compatible configuration to allow access to any of the internal registers (see Register Map) for device programming or examination of internal status. See the specific sections for each register for details on meanings and default conditions. SPI mode slave operation requires that a device external to the 8V97053 has performed any necessary serial bus arbitration and/or address decoding at the level of the board or system. The 8V97053 begins a cycle by detecting an asserted (low) state on the nCS input at a rising edge of SCLK. This is also coincident with the first bit of data being shifted into the device. In SPI mode, the first bit is the Most Significant Bit (MSB) of the data word being written. Data must be written in 32-bit words, with nCS remaining asserted and one data bit being shifted in to the 8V97053 on every rising edge of SCLK. If nCS is de-asserted (high) at any time except after the complete 32nd SCLK cycle, this is treated as an error and the shift register contents are discarded. No data is written to any internal registers. If nCS is de-asserted (high) as expected at a time at least t_{SU} after the 32nd falling edge of SCLK, then this will result in the shift register contents being acted on according to the control bit in it. It is recommended to write the registers in reverse sequential order, starting with the highest register number first and ending with Register 0. The word format of the 32-bit quantity in the shift register is shown in Table 16. The register fields in the 8V97053 have been organized so that the three LSBs in each 32-bit register row are not used for data transfer. These bits will represent the base address for the 32-bit register row. Table 16. SPI Mode Serial Word Structure | | MSB | | | | | | | | | | | | | |---------|-----|----------------------|---|---|---|---|-------|--|--|--|--|--|--| | Bit # | 31 | | 5 | 4 | 3 | 2 | 2 1 0 | | | | | | | | Meaning | | D[31:3] Control Bits | | | | | | | | | | | | | Width | | 29 3 | | | | | | | | | | | | To perform a register Read, the user needs set the MUX_OUT bits (Bits[28:D26]) in Register 2 to 111 to configure the MUX_OUT pin as SDO. Register 7 (Instruction register) needs to be set for Read operation. Bit D3 of Register 7 will set the Read or Write command, and Bits[D4:D6] determine the read back address. If a read operation is requested, 32-bits of read data will be provided in the immediately subsequent access. nCS must be de-asserted (high) for at least t_{PW} and then reasserted (low). If SCLKE = 1 (default condition), one data bit will be transmitted on the SDO output at the falling edge of nCS and each falling edge of SCLK as long as nCS remains asserted (low), and the master device should capture data on the rising edge of SCLK. If SCLKE = 0, one data bit will be transmitted on the SDO output at each rising edge of SCLK as long as nCS remains asserted (low), and the master device should capture data on the falling edge of SCLK. If nCS is de-asserted (high) before 32-bits of read data have been shifted out, the read cycle will be considered to be completed. If nCS remains asserted (low) longer than 32-bit times, then the data during those extra clock periods will be undefined. The MSB of the data will be presented first. # Register Map # Register 0 Table 17. Register 0 Bit Allocation | BITS | D31 | D30 | D29 | D28 | D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | 60 | D8 | D7 | 9Q | D5 | D4 | D3 | D2 | D1 | D0 | |-------------|----------|--|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|------------------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-----| | NAME | RESERVED | NDiv16 | NDiv15 | NDiv14 | NDiv13 | NDiv12 | NDiv11 | NDiv10 | 8viQN | NDiv8 | NDiv7 | NDiv6 | NDiv5 | NDiv4 | NDiv3 | NDiv2 | NDiv1 | FDiv12 | FDiv11 | FDiv10 | FDiv9 | FDiv8 | FDiv7 | FDiv6 | FDiv5 | FDiv4 | FDiv3 | FDiv2 | FDiv1 | CB3 | CB2 | CB1 | | DESCRIPTION | RESERVED | FEEDBACK DIVIDER INTEGER VALUE (INT) FEEDBACK DIVIDER FRACTIONAL VAL (FRAC) | | | | | | | | | LUE | | | NTF
L
BITS | | | | | | | | | | | | | | | | | | | Table 18. Register 0: 16-Bit Feedback Divider Integer Value (INT). Function Description | Name | Description | Factory Default | Function | |------------|--------------------------------------|------------------------------------|--| | NDiv[16:1] | Feedback Divider Integer Value (INT) | 0000 0000 0110 0100
(INT = 100) | 0000 0000 0000 0000 = Not allowed
0000 0000 0000 0001 = Not allowed

0000 0000 0000 0111 = Not allowed
0000 0000 0000 1000 = 8

0000 0000 0001 0111 = 23
0000 0000 0001 1000 = 24

1111 1111 1111 1111 = 65,535 | Table 19. Register 0: 12-Bit Feedback Divider Fractional Value (FRAC). Function Description^[a] | Name | Description | Factory Default | Function | | | | | |------------|--|------------------------------|--|--|--|--|--| | FDiv[12:1] | Feedback Divider Fractional Value (FRAC) | 0000 0000 0000
(FRAC = 0) | 0000 0000 0000 = 0
0000 0000 0001 = 1 | | | | | | | | |
1111 1111 1111 = 4095 | | | | | [[]a] This table is used when bit 16b_12b_sel is set to 0 (default). If the 16b_12b_sel is set to 1, refer to Table 83. Table 20. Register 0: 3-Bit Control Bits. Function Description^[a] | Name | Description | Factory Default | | | | | | |---------|--------------|--------------------------------|--|--|--|--|--| | CB[3:1] | Control Bits | 000 = Register 0 is programmed | | | | | | [[]a] The user has to set CB[3:1] to 000 in order to write to Register 0. # Register 1 Table 21. Register 1 Bit Allocation #### Table 22. Register 1: 1-Bit BAND_SEL_DISABLE. Function Description | Name | Description | Factory Default | Function | |------------------|------------------|-----------------|--| | Band_Sel_Disable | BAND_SEL_DISABLE | 0 | 0 = VCO Band Selection occurs after a Write to Register 0 | | | | | 1 = VCO Band selection is not active and hold to previous VCO band selection | Table 23. Register 1: 12-Bit Phase Value (PHASE). Function Description | Name | Description | 16b_12b_sel
(Bit D20, Register7) | Factory Default | Function | |--------------|-------------|-------------------------------------|-----------------|------------------------| | Phase [12:1] | PHASE | 0 | 0000 0000 0001 | 0000 0000 0000 = 0 | | | | | | 0000 0000 0001 = 1 | | | | | | | | | | | | 1111 1111 1111 = 4095 | | | | 1 | 0000 0000 0001 | 0000 0000 0000 = 0 | | | | | | 0000 0000 0001 = 16 | | | | | | | | | | | | 1111 1111 1111 = 65520 |
Table 24. Register 1: 12-Bit Modulus Value (MOD). Function Description^[a] | Name | Description | Factory Default | Function | |-----------|-------------|-----------------|---| | Mod[12:1] | MOD | 0000 0000 0010 | 0000 0000 0000 = Not Allowed
0000 0000 0001 = Not Allowed
0000 0000 0010 = 2

1111 1111 1111 = 4095 | [[]a] This table is used when bit D20 in Register 7 (16b_12B_sel) is set to 0 (default). If 16b_12b_sel is set to 1, refer to Table 82. Table 25. Register 1: 3-Bit Control Bits. Function Description^[a] | Name | Description | Function | |---------|--------------|--------------------------------| | CB[3:1] | Control Bits | 001 = Register 1 is programmed | [[]a] The user has to set CB[3:1] to 001 in order to write to Register 1. # Register 2 Table 26. Register 2 Bit Allocation | BITS | D31 | D30 | D29 | D28 | D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-------------|----------|------------|------------|----------|-----------|----------|-------------|----------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|---------------|----------|----------|----------|----------|-----|-----|-------------|------------|----------|--------|-----|------------------|-----| | NAME | RESERVED | ModeNoise1 | ModeNoise2 | MUX_OUT3 | MUX_OUT2 | MUX_OUT1 | RefDoub | RDiv2 | R10 | R9 | R8 | R7 | R6 | R5 | R4 | R3 | R2 | R1 | DoubBuff1 | ChrgPmp4 | ChrgPmp3 | ChrgPmp2 | ChrgPmp1 | LDF | LDP | PD_pol | PwrDwn | CP_HIGHZ | Unused | CB3 | CB2 | CB1 | | DESCRIPTION | RESERVED | AUOM ASION | | MU | JX_0
T | DU | REF DOUBLER | REF DIV2 | | | | R | COL | JNTE | ER | | | | DOUBLE BUFFER | ICI | P SE | TTIN | IG | LDF | LDP | PD POLARITY | POWER DOWN | CP HIGHZ | UNUSED | | NTF
L
BITS | | Table 27. Register 2: 2-Bit NOISE MODE. Function Description | Name | Description | Factory Default | Function | |----------------|-------------|-----------------|--| | ModeNoise[2:1] | NOISE MODE | 00 | 00 = Low Noise Mode (Dither OFF) 01 = Reserved 10 = Reserved 11 = Low Spur Mode (Dither Enabled) | Table 28. Register 2: 3-Bit MUX_OUT. Function Description | Name | Description | Factory Default | Function | |--------------|-------------|-----------------|--| | MUX_OUT[3:1] | MUX_OUT | 000 | 000 = High-Impedance output 001 = V _{DDD} 010 = GNDD 011 = R counter output 100 = N counter output 101 = Reserved 110 = Lock Detect 111 = MUX_OUT configured as SDO | Table 29. Register 2: 1-Bit REF DIV2. Function Description | Name | Description | Factory Default | Function | |-------|-------------|-----------------|--------------| | RDIV2 | REF DIV2 | 0 | 0 = Disabled | | | | | 1 = Enabled | Table 30. Register 2: 10-Bit R COUNTER (R). Function Description | Name | Description | Factory Default | Function | |---------|-------------|-----------------|---| | R[10:1] | R | 00 0000 0001 | 00 0000 0000 = Not Allowed
00 0000 0001 = 1
00 0000 0010 = 2

11 1111 1111 = 1023 | #### Table 31. Register 2: 1-Bit DOUBLE BUFFER. Function Description [a] | Name | Description | Factory Default | Function | |-----------|---------------|-----------------|-----------------------------| | DoubBuff1 | DOUBLE BUFFER | 0 | 0 = Disabled
1 = Enabled | [[]a] Bit D13 enables or disables Double Buffering of Bits[D22:D20] in Register 4. Refer to Program Modes. Table 32. Register 2: 1-Bit Lock Detect Function (LDF). Function Description^[a] | Name | Description | Factory Default | Function | |------|-------------|-----------------|---| | LDF | LDF | 0 | 0 = 40 consecutive cycles (recommended for FRAC-N mode) 1 = 5 consecutive cycles (recommended for INT-N mode) | [[]a] LDF controls the number of PFD cycles that needs to be considered by the Lock Detect function to decide if the part has achieved lock. Table 33. Register 2: 1-Bit Lock Detect Precision. Function Description | Name | Description | Factory Default | Function | |------|-------------|-----------------|---------------------| | LDP | LDP | 0 | 0 = 10ns
1 = 6ns | Table 34. Register 2: 1-Bit Phase Detector Polarity. Function Description | Name | Description | Factory Default | Function | |--------|-------------|-----------------|------------------------------| | PD_Pol | PD POLARITY | 1 | 0 = Negative
1 = Positive | Table 35. Register 2: 1-Bit Charge Pump High-Impedance. Function Description | Name | Description | Factory Default | Function | |----------|-------------|-----------------|-----------------------------| | CP_HIGHZ | CP HIGHZ | 0 | 0 = Disabled
1 = Enabled | Table 36. Register 2: 3-Bit Control Bits. Function Description^[a] | Name | Description | Function | |---------|--------------|--------------------------------| | CB[3:1] | Control Bits | 010 = Register 2 is programmed | [[]a] The user has to set CB[3:1] to 010 in order to write to Register 2. ### Register 3 Table 37. Register 3 Bit Allocation | DESCRIPTION | NAME | BITS | |------------------|-------------|------| | | RESERVED | D31 | | | RESERVED | D30 | | RI | RESERVED | D29 | | ESE | RESERVED | D28 | | RVE | RESERVED | D27 | | D | RESERVED | D26 | | | RESERVED | D25 | | | RESERVED | D24 | | BAND SELECT | BandSelCM | D23 | | UNUSED | Unused | D22 | | UNUSED | Unused | D21 | | RESERVED | RESERVED | D20 | | וובטבווי בט | RESERVED | D19 | | UNUSED | Unused | D18 | | RESERVED | RESERVED | D17 | | CIK NIV MODE | CIkDivMode2 | D16 | | | CIkDivMode1 | D15 | | | CIkDiv12 | D14 | | | CIkDiv11 | D13 | | C | CIkDiv10 | D12 | | CLOC | CIkDiv9 | D11 | | CK C | CIkDiv8 | D10 | | OUN | CIkDiv7 | D9 | | NTEF | CIkDiv6 | D8 | | R VA | CIkDiv5 | D7 | | LUE | CIkDiv4 | D6 | | | CIkDiv3 | D5 | | | CIkDiv2 | D4 | | | CIkDiv1 | D3 | | | CB3 | D2 | | NTF
L
BITS | CB2 | D1 | | | CB1 | D0 | Table 38. Register 3: 1-Bit Band Select Clock Mode. Function Description^[a] | Name | Description | Factory Default | Function | |-----------|--------------------------|-----------------|--| | BandSelCM | BAND SELECT (CLOCK RATE) | 0 | 0 = LOW (125kHz)
1 = HIGH (up to 500kHz logic sequence for
Faster Lock applications) | [[]a] BAND SELECT (CLOCK RATE) selects the speed of the logic sequence for the band selection. BandSelCM = 1 sets the logic sequence rate faster, which is recommended for fast lock operation and when high PFD frequencies are used. BandSelCM = 0 is recommended when low PFD frequencies (125kHz) are used. When using BandSelCM = 1, the value of the BAND SELECT CLOCK COUNTER (BndSelDiv[8:1]) must be less than or equal to 254. Table 39. Register 3: 2-Bit Clock Divider Mode. Function Description | Name | Description | Factory Default | Function | |-----------------|--------------|-----------------|--| | ClkDivMode[2:1] | CLK DIV MODE | 00 | 00 = Clock Divider OFF
01 = Fast Lock Enabled | | | | | 10 = Resync Enabled
11 = Reserved | Table 40. Register 3: 12-Bit Clock Divider Value (CLKDIV). Function Description | Name | Description | Factory Default | Function | |--------------|-------------|-----------------|---| | ClkDiv[12:1] | CLKDIV | 0000 0000 0001 | 0000 0000 0000 = Not allowed
0000 0000 0001 = 1
0000 0000 0010 = 2

1111 1111 1111 = 4095 | Table 41. Register 3: 3-Bit Control Bits. Function Description^[a] | Name | Description | Function | |---------|--------------|--------------------------------| | CB[3:1] | CONTROL BITS | 011 = Register 3 is programmed | [[]a] The user has to set CB[3:1] to 011 in order to write to Register 3. ## Register 4 Table 42. Register 4 Bit Allocation | DESCRIPTION | NAME | |---------------------------------------|--------------| | <u> </u> | RESERVED | | SELECT | FbkSel | | RE DIVIDER | RFDIV3 | | | RFDiv1 | | | BndSelDiv8 | | | BndSelDiv7 | | | BndSelDiv6 | | | BndSelDiv5 | | [| BndSelDiv4 | | | BndSelDiv3 | | | BndSelDiv2 | | | BndSelDiv1 | | DOWN | VCOPwrDwn | | | MTLD | | SELECT | RF_OUTB_Sel | | ENABLE | RF_OUTB_En | | I I I I I I I I I I I I I I I I I I I | RF_OUTB_Pwr2 | | | RF_OUTB_Pwr1 | | ENABLE | RF_OutA_En | | I I I I I I I I I I I I I I I I I I I | RF_OUTA_Pwr2 | | | RF_OUTA_Pwr1 | | | CB3 | | NTR | CB2 | | _ | CB. | Table 43. Register 4: 1-Bit Feedback Select. Function Description | Name | Description | Factory Default | Function | |--------|-----------------|-----------------|-----------------| | FbkSel | FEEDBACK SELECT | 1 | 0 = Divided | | | | | 1 = Fundamental | Table 44. Register 4: 3-Bit RF Output Divider (÷ MO) Select. Function Description | Name | Description | Factory Default | Function | |------------|-------------------|-----------------|-----------------| | RFDiv[3:1] | RF OUTPUT DIVIDER | 000 | 000 = Div by 1 | | | | | 001 = Div by 2 | | | | | 010 = Div by 4 | | | | | 011 = Div by 8 | | | | | 100 = Div by 16 | | | | | 101 = Div by 32 | | | | | 110 = Div by 64 | | | | | 111 = Reserved | Table 45. Register 4: 8-Bit Band Select Clock Counter. Function Description [a] | Name | Description | Factory Default | Function | |----------------|---------------------------|-----------------|--| | BndSelDiv[8:1] | BAND SELECT CLOCK COUNTER | 0000 0001 | 0000 0000 = Not
Allowed
0000 0001 = 1
0000 0010 = 2

1111 1111 = 255 | [[]a] BAND SELECT CLOCK COUNTER sets the value of the divider for the band select logic clock input. By default, the output frequency of the R counter is used to clock the band select logic. If this frequency is larger than 125kHz, the Band Select Clock counter can be used to divide the R counter output to a smaller frequency suitable for the band selection logic. Table 46. Register 4: 1-Bit VCO Power Down. Function Description | Name | Description | Factory Default | Function | |-----------|----------------|-----------------|--| | VCOPwrDwn | VCO POWER DOWN | 0 | 0 = VCO Powered Up
1 = VCO Powered Down | Table 47. Register 4: 1-Bit Mute Till Lock Detect. Function Description | Name | Description | Factory Default | Function | |------|-------------|-----------------|-------------------| | MTLD | MTLD | 0 | 0 = Mute Disabled | | | | | 1 = Mute Enabled | Table 48. Register 4: 1-Bit RF_OUTB Select. Function Description | Name | Description | Factory Default | Function | | | | | |-------------|----------------|-----------------|--------------------|--|--|--|--| | RF_OUTB_Sel | RF_OUTB SELECT | 0 | 0 = Divided Output | | | | | | | | | 1 = Fundamental | | | | | Table 49. Register 4: 1-Bit RF_OUTB Enable. Function Description | Name | Description | Factory Default | Function | | | | | |------------|----------------|-----------------|---|--|--|--|--| | RF_OUTB_En | RF_OUTB ENABLE | 0 | 0 = Disabled (High-Impedance)
1 = Enabled ^[a] | | | | | [[]a] RF_OUT_A must also be enabled. Table 50. Register 4: 2-Bit RF_OUTB Output Power. Function Description^[a] | Name | Description | Factory Default | Function | |------------------|----------------------|-----------------|--| | RF_OUTB_Pwr[2:1] | RF_OUTB OUTPUT POWER | 10 | 00 = -4dBm
01 = -1dBm
10 = +2dBm
11 = +5dBm | [[]a] $f_{RF} OUT = 34.375MHz$. Table 51. Register 4: 1-Bit RF_OUTA Enable. Function Description | Name | Description | Factory Default | Function | |------------|----------------|-----------------|---| | RF_OUTA_En | RF_OUTA ENABLE | 0 | 0 = Disabled ^[a] (High-Impedance)
1 = Enabled | [[]a] RF_OUT_B will also disable. Table 52. Register 4: 2-Bit RF_OUTA Output Power. Function Description^[a] | Name | Description | Factory Default | Function | |------------------|----------------------|-----------------|--| | RF_OUTA_Pwr[2:1] | RF_OUTA OUTPUT POWER | 10 | 00 = -4dBm
01 = -1dBm
10 = +2dBm
11 = +5dBm | [[]a] $f_{RF_OUT} = 34.375MHz$. Table 53. Register 4: 3-Bit Control Bits. Function Description^[a] | Name | Description | Function | |---------|--------------|--------------------------------| | CB[3:1] | CONTROL BITS | 100 = Register 4 is programmed | [[]a] The user has to set CB[3:1] to 100 in order to write to Register 4. ### Register 5 Table 54. Register 5 Bit Allocation^[a] | BITS | D31 | D30 | D29 | D28 | D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | 9Q | D5 | D4 | D3 | D2 | D1 | 0 | |-------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|-----|-----| | NAME | RESERVED LDPInMode2 | LDPInMode1 | RESERVED CB3 | CB2 | CB1 | | DESCRIPTION | | | RI | ESE | RVE | D | | | JUON NIG U I | <u>-</u> | | RESERVED | | | | | | | | NTF
L
BITS | | | | | | | | | | | | | [[]a] D19 and D20 must be set to 1. Table 55. Register 5: 2-Bit LD (Lock Detect) Pin Mode. Function Description | Name | Description | Factory Default | Function | |----------------|-------------|-----------------|---| | LDPInMode[2:1] | LD PIN MODE | 01 | 00 = Low
01 = Digital Lock Detect
10 = Low
11 = High | Table 56. Register 5: 3-Bit Control Bits. Function Description^[a] | Name | Description | Function | |---------|--------------|--------------------------------| | CB[3:1] | CONTROL BITS | 101 = Register 5 is programmed | [[]a] The user has to set CB[3:1] to 101 in order to write to Register 5. ### Register 6 Table 57. Register 6 Bit Allocation^{[a] [b] [c]} | BITS | D31 | D30 | D29 | D28 | D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-------------|-------------------|-----------------------|---------------|---------------|----------|----------|----------------|----------------|-----------|-----------|-------------|-----------------|----------|----------|------------------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|-----------------|---------------|---------------|-----|------------------|-----| | NAME | DigLock | Band_select_done | Reserved | Reserved | LDP_Ext2 | LDP_Ext1 | rfoutb_hi_pwr | rfouta_hi_pwr | SDMOrder2 | SDMOrder1 | DitherG | ShapeDitherEn | Reserved | SDMType | band_select_acc2 | band_select_acc1 | Reserved ExtBndSelDiv4 | ExtBndSelDiv3 | ExtBndSelDiv2 | ExtBndSelDiv1 | CB3 | CB2 | CB1 | | DESCRIPTION | DIGITAL LOCK (RO) | BAND_SELECT_DONE (RO) | RESERVED (RO) | RESERVED (RO) | I NP FXT | - LY - | RF_OUTB_HI_PWR | RF_OUTA_HI_PWR | SDM ORDER | | DITHER GAIN | SHAPE_DITHER_EN | RESERVED | SDM_TYPE | RAND SELECT ACC | | | ļ | RESI | ERV | ED (| RO) | | | RESERVED | | EXT BND SEL DIV |)
]
1 | | | NTF
L
BITS | | [[]a] It is recommended that the user writes to Register 0 after writing to Register 6. Table 58. Register 6: 1-Bit Digital Lock Detect. Function Description | Name | Description | Function | |---------|--------------|--| | DigLock | DIGITAL LOCK | 0 = PLL Not Locked
1 = PLL Locked (according LDF and LDP in Register 2) | Table 59. Register 6: 1-Bit Band Select Status (Read Only). Function Description | Name | Description | Function | |------------------|------------------|---| | Band_select_done | BAND_SELECT_DONE | 0 = Band Selection Not Complete 1 = Band Selection Complete | [[]b] Bits D7 and D19 must be set to 0 for correct operation. [[]c] RO Bits are Read Only Bits. Table 60. Register 6: 2-Bit Extra Lock Detect Precision. Function Description^[a] | | | | | Function | | |--------------|-----------------------------|-----------------|-----------|------------------------|-------| | Name | Description | Factory Default | Extra Bit | LDP Bits in Register 2 | Value | | LDP_Ext[2:1] | LDP_EXT | 00 | 00 | 0 | 10ns | | | Extra Lock Detect Precision | | | 1 | 6ns | | | | | 01 | 0 | 3ns | | | | | | 1 | 3ns | | | | | 10 | 0 | 4ns | | | | | | 1 | 4.5ns | | | | | 11 | 0 | 1.5ns | | | | | | 1 | 1.5ns | [[]a] LDP_Ext[2:1] are Extra Lock Detect Precision bits. When these bits are set to 00, then the precision of the Lock Detect precision only relies on the LDP bit in Register 2, so that the lock detect window is 10ns or 6ns, depending on the LDP bit in Register 2. For high PFD frequencies, the 6ns window may be larger than the entire ref/FB period. The LDP_ext bits reduce the size of the lock detect window to the value described in Table 58, allowing an accurate lock detection with higher PFD frequencies. Table 61. Register 6: 1-Bit Extra Bit of RF_OUTB Power. Function Description^{[a] [b]} | | | | | Function | | |----------------|----------------|-----------------|-----------|---|-------------| | Name | Description | Factory Default | Extra Bit | RF_OUTB OUTPUT POWER Bits in Register 4 | Value (dBm) | | rf_outb_hi_pwr | RF_OUTB_HI_PWR | 0 | 0 | 00 | -4 | | | | | | 01 | -1 | | | | | | 10 | +2 | | | | | | 11 | +5 | | | | | 1 | 00 | +2 | | | | | | 01 | +5 | | | | | | 10 | +6 | | | | | | 11 | +7 | $[\]hbox{[a] RF_OUTB_HI_PWR is an Extra Bit of RF_OUTB Power that increases the output power to the RF_OUTB output.}$ [[]b] $f_{RF_OUT} = 34.375MHz$. Table 62. Register 6: 1-Bit Extra Bit of RF_OUTA Power. Function Description^{[a] [b]} | | | | | Function | | |----------------|----------------|-----------------|-----------|---|-------------| | Name | Description | Factory Default | Extra Bit | RF_OUTA OUTPUT POWER Bits in Register 4 | Value (dBm) | | rf_outa_hi_pwr | RF_OUTA_HI_PWR | 0 | 0 | 00 | -4 | | | | | | 01 | -1 | | | | | | 10 | +2 | | | | | | 11 | +5 | | | | | 1 | 00 | +2 | | | | | | 01 | +5 | | | | | | 10 | +6 | | | | | | 11 | +7 | [[]a] RF_OUTA_HI_PWR is an Extra Bit of RF_OUTA Power that increases the output power to the RF_OUTA output. Table 63. Register 6: 2-Bit Sigma Delta Modulator Order Configuration. Function Description | Name | Description | Factory Default | Function | |---------------|-------------|-----------------|--| | SDMOrder[2:1] | SDM_ORDER | 11 | 00 = OFF. The device operates in integer mode and the fractional part is ignored. 01 = 1st order 10 = 2nd order 11 = 3rd order | Table 64. Register 6: 2-Bit Dither Gain Configuration. Function Description | Name | Description | Factory Default | Function | |---------|-------------|-----------------|---| | DitherG | DITHER GAIN | 0 | 0 = LSB Dither (Recommended)
1 = LSB x4 Dither | Table 65. Register 6: 1-Bit Dither Noise Shaping Configuration.
Function Description | Name | Description | Factory Default | Function | |---------------|-----------------|-----------------|--| | ShapeDitherEn | SHAPE_DITHER_EN | 1 | 0 = Dither Noise Shaping Disabled 1 = Dither Noise Shaping Enabled | [[]b] $f_{RF_OUT} = 34.375MHz$. Table 68. Register 6: 1-Bit Sigma Delta Modulator Type Configuration. Function Description | Name | Description | Factory Default | Function | |---------|-------------|-----------------|---------------------------| | SDMType | SDM_TYPE | 1 | 0 = SSMF-B
1 = SSMF-II | Table 69. Register 6: 2-Bit VCO Band Selection Accuracy Configuration. Function Description | Name | Description | Factory Default | Function | |----------------------|-----------------|-----------------|---| | band_select_acc[2:1] | BAND_SELECT_ACC | 00 | 00 = 1 cycle of the band select clock (output of the Band Select Divider) 01 = 2 cycles 10 = 4 cycles 11 = Reserved | Table 72. Register 6: 4-Bit Extra Most Significant Bits of Band Select Divider. Function Description^{[a] [b]} | Name | Description | Factory Default | Value | Function | |-------------------|-----------------|-----------------|-----------------------|------------------------| | ExtBndSelDiv[4:1] | EXT_BND_SEL_DIV | 0000 | BSCC_R4 + | 0000 = [BSCC_R4] | | | | | [EXT_BND_SEL_DIV]x256 | 0001 =[BSCC_R4]+256 | | | | | | 0010 = [BSCC_R4] + 512 | | | | | | | | | | | | 1111 = [BSCC_R4]+3840 | [[]a] EXT_BND_SEL_DIV are Extra 4 MSBs that extend the Band Select Clock Counter in Register 4. These additional bits are necessary for band selection to divide down to <500kHz when high PFD frequencies are used. Table 73. Register 6: 3-Bit Control Bits. Function Description^[a] | Name | Description | Function | |---------|--------------|--------------------------------| | CB[3:1] | CONTROL BITS | 110 = Register 6 is programmed | [[]a] The user has to set CB[3:1] to 110 in order to write to Register 6. [[]b] BSCC_R4 is the BAND SELECT CLOCK COUNTER value in Register 4. ### Register 7 Table 74. Register 7 Bit Allocation^{[a] [b] [c]} | BITS | D31 | D30 | D29 | D28 | D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | 6Q | D8 | D7 | 9Q | D2 | D4 | D3 | D2 | D1 | D0 | |-------------|--------------------|---------------------|----------------|----------|---------|--------------|---------|---------|---------|---------|---------|-------------|-----|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-------|----------|---------------|----------|----------|-----|------------------|-----| | NAME | Loss_Dig_Lock | Loss_Anlg_Lock | Spi_error | Reserved | Rev_ID3 | Rev_ID2 | Rev_ID1 | Dev_ID4 | Dev_ID3 | Dev_ID2 | Dev_ID1 | 16b_12b_sel | 1 | RESERVED | RESERVED | RESERVED | ext_mod4 | ext_mod3 | ext_mod2 | ext_mod1 | ext_fdiv4 | ext_fdiv3 | ext_fdiv2 | ext_fdiv1 | sclke | Rd_Addr3 | Rd_Addr2 | Rd_Addr1 | SPI_R_WN | CB3 | CB2 | CB1 | | DESCRIPTION | LOSS_DIG_LOCK (SB) | LOSS_ANLG_LOCK (SB) | SPI_ERROR (SB) | RESERVED | | EV_I
(RO) | | DE | EV_II | D (R | O) | 16b_12b_SEL | 1 | RESERVED | RESERVED | RESERVED | E | EXT_ | MOI | D | E | XT_ | FRA | С | SCLKE | | READBACK_ADDR | | SPI_R_WN | | NTF
L
BITS | | [[]a] SB Bits are Sticky Bits and need to be cleared. Table 75. Register 7: 1-Bit Loss of Digital Lock. Function Description^[a] | Name | Description | Function | |---------------|---------------|---| | Loss_Dig_Lock | LOSS_DIG_LOCK | 0 = Locked since last time register was cleared | | | | 1 = Loss of Digital Lock since last time register was cleared | [[]a] This bit is a sticky bit and needs to be cleared with a SPI write of 1 to detect further Loss of Digital Lock occurrences. Table 76. Register 7: 1-Bit Loss of Analog Lock. Function Description[a] | Name | Description | Function | |----------------|----------------|---| | Loss_Anlg_Lock | LOSS_ANLG_LOCK | 0 = Band Selection remained the same since last time register was cleared | | | | 1 = Band selection occurred since last time register was cleared | [[]a] This bit is a sticky bit and needs to be cleared with a SPI write of 1 to detect further Band Selection occurrences. Table 77. Register 7: 1-Bit SPI Error. Function Description[a] | Name | Description | Function | |-----------|-------------|---| | Spi_error | SPI_ERROR | 0 = No SPI write error detection
1 = SPI Write error | [[]a] Spi_error Bit goes high if the SPI interface detects a cycle with the incorrect number of SCLK cycles between nCS asserted Low and nCS asserted High. The SPI interface expects 32 clock cycles between nCS asserted Low and nCS asserted High. Any Read/Write via the SPI interface with more or less than 32 clock cycles will result in the Spi_error Bit switched to 1. This bit is a sticky bit and needs to be cleared with a SPI write of 1 in order to detect further possible SPI Write/Read errors. [[]b] RO Bits are Read Only Bits. [[]c] Write 1 to Bit D19 for normal reliable operation. Table 78. Register 7: 3-Bit Revision ID. Function Description | Name | Description | Function | |-------------|-------------|----------| | Rev_ID[3:1] | REV_ID | 010 | Table 79. Register 7: 4-Bit Device ID. Function Description | Name | Description | Function | |-------------|-------------|----------| | Dev_ID[4:1] | DEV_ID | 0110 | Table 80. Register 7: 1-Bit Resolution Select. Function Description | Name | Description | Factory Default | Function | |-------------|-------------|-----------------|--| | 16b_12b_sel | 16b_12b_SEL | 0 | 0 = FRAC, PHASE and MOD set to 12-Bit resolution,
Bit[D19:D8] set to 0 and unused | | | | | 1 = FRAC, PHASE and MOD set to 16-Bit resolution | Table 82. Register 7: 4-Bit Extra Bits of MOD Value. Function $Description^{[a]}$ | | | | | Function | | |--------------|-------------|-----------------|----------------|----------|-------------| | Name | Description | Factory Default | MOD | EXT_MOD | Value | | ext_mod[4:1] | EXT_MOD | 0000 | 0000 0000 0000 | 0000 | Not Allowed | | | | | | 0001 | Not Allowed | | | | | | 0010 | 2 | | | | | | ••• | | | | | | | 1111 | 15 | | | | | 0000 0000 0001 | 0000 | 16 | | | | | | ••• | | | | | | | 1111 | 31 | | | | | | ••• | | | | | | 1111 1111 1111 | 0000 | 65520 | | | | | | ••• | | | | | | | 1111 | 65535 | [[]a] Bit D20 in Register 7 (16b_12b_SEL) is required to be set to 1 when using this table. If Bit D20 in Register 7 (16b_12b_SEL) is set to 0, see Table 24. Table 83. Register 7: 4-Bit Extra Bits of FRAC Value. Function Description^[a] | | | | | Function | | | | |---------------|-------------|-----------------|----------------|----------|-------|--|--| | Name | Description | Factory Default | FRAC | EXT_FRAC | Value | | | | ext_fdiv[4:1] | EXT_FRAC | 0000 | 0000 0000 0000 | 0000 | 0 | | | | | | | | 0001 | 1 | | | | | | | | | | | | | | | | | 1111 | 15 | | | | | | | 0000 0000 0001 | 0000 | 16 | | | | | | | | | | | | | | | | | 1111 | 31 | | | | | | | | | | | | | | | | 1111 1111 1111 | 0000 | 65520 | | | | | | | | | | | | | | | | | 1111 | 65535 | | | [[]a] Bit D20 in Register 7 (16b_12b_SEL) is required to be set to 1 when using this table. If Bit D20 in Register 7 (16b_12b_SEL) is set to 0, refer to Table 19. Table 84. Register 7: 1-Bit SCLKE. Function Description | Name | Description | Factory Default | Function | |-------|-------------|-----------------|--| | Scike | SCLKE | 1 | 0 = Output Data in a Read Cycle on a Rising Edge of SCLK 1 = Output Data in a Read Cycle on a Falling Edge of SCLK | Table 85. Register 7: 1-Bit READBACK_ADDR. Function Description^[a] | Name | Description | Function | |--------------|---------------|------------------| | Rd_Addr[3:1] | READBACK_ADDR | 000 = Register 0 | | | | 001 = Register 1 | | | | 010 = Register 2 | | | | 011 = Register 3 | | | | 100 = Register 4 | | | | 101 = Register 5 | | | | 110 = Register 6 | | | | 111 = Register 7 | [[]a] In order to Read a register, the user must write to Register 7 first and set the SPI_R_WN Bit to 1 (READ) and indicate the address of the register to read in the READBACK_ADDR Bit (Bits[D6:D4]). Table 86. Register 7: 1-Bit SPI_R_WN. Function Description [a] | Name | Description | Factory Default | Function | |----------|-------------|-----------------|-----------| | SPI_R_WN | SPI_R_WN | 0 | 0 = WRITE | | | | | 1 = READ | [[]a] Writing this bit to a 1 will allow the user to read back the register selected in READBACK_ADDR on the next 32 SCLK cycle. This bit will revert back to 0 once it is written with 1 and will not retain the 1 value. Table 87. Register 7: 3-Bit Control Bits. Function Description[a] | Name | Description | Function | |---------|--------------|--------------------------------| | CB[3:1] | CONTROL BITS | 111 = Register 7 is programmed | [[]a] The user has to set CB[3:1] to 111 in order to write to Register 7. # **Applications Information** ### Loop Filter Calculations 2nd Order Loop Filter This section helps design a 2nd order loop filter for the 8V97053. A general 2nd order loop filter is shown in Figure 12. Step-by-step calculations to determine Rz, Cz and Cp values for a desired loop bandwidth are described below. Required parameters are provided. A spreadsheet for calculating the loop filter values is also available. Figure 12. Typical 2nd Order Loop Filter - 1. Determine desired loop bandwidth fc. - 2. Calculate Rz: $$Rz = \frac{2 * \pi * fc * N}{Icp * Kvco}$$ Where, Icp is charge pump
current. Icp is programmable from 310µA to 5mA. N is effective feedback divider. N must be programmed into the following value. $$N = \frac{Fvco}{Fpd}$$ F_{VCO} is VCO frequency. VCO frequency range: 2200MHz to 4400MHz Fpd is phase detector input frequency. $$Fpd = \frac{F_ref}{Pv}$$ F_ref is reference clock (REF_IN) input frequency. Pv is overall pre-divider setting. Kvco is VCO gain. Kvco = 60MHz/V 3. Calculate Cz: $$Cz = \frac{\alpha}{2 * \pi * fc * Rz}$$ Where, α = fc/ fz, user can determine an α number. α > 6 is recommended. fz is frequency at zero. 4. Calculate Cp: $$Cp = \frac{Cz}{\alpha * \beta}$$ Where. β = fp/fc, user can determine β number. β > 4 is recommended. fp is frequency at pole. 5. Verify Phase Margin (PM) $$PM = \arctan\left(\frac{b-1}{2*\sqrt{b}}\right)$$ Where, $$b = 1 + \frac{Cz}{Cp}$$ The phase margin (PM) should be greater than 50°. A spreadsheet for calculating the loop filter component values is available at www.IDT.com. To use the spreadsheet, the user simply enters the following parameters: fc, F_ref, $$P_{V}$$, lcp, F_{VCO} , α and β . The spreadsheet will provide the component values, Rz, Cz and Cp as the result. The spreadsheet also calculates the maximum phase margin for verification. ### 3rd Order Loop Filter This section helps design a 3rd order loop filter for the 8V97053. A general 3rd order loop filter is shown in Figure 13. Figure 13. Typical 3rd Order Loop Filter The Rz, Cz and Cp can be calculated as 2nd order loop filter. The following equation help determine the 3rd order loop filter Rp2 and Cp2. Pick an Rp2 value. Rp2 ~ 1.5xRz is suggested. $$C_{P2} = \frac{R_Z * C_P}{R_{P2} * \gamma}$$ Where. γ is ratio between the 1st pole frequency and the 2nd pole frequency. $\gamma > 4$ is recommended. ### Recommendations for Unused Input and Output Pins ### Inputs #### **LVCMOS Control Pins** All control pins have internal pullup and pulldown resistors; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### Outputs #### **Output Pins** For any unused output, it can be left floating and disabled. ### Schematic Example Figure 14 and Figure 15 show general application schematic examples for the 8V97053. For power rails, bypass capacitors must be provided to all power supply pins. Suggest at least one bypass capacitor per power pin. Value can be ranged from 0.01uF or 0.1uF. Mix values of bypass capacitor can help filtering wider range of power supply noise. The 8V97053 input is high impedance. The input termination depends on the driver type termination requirements. In these examples, the 8V97053 REF_IN input is terminated with a matched load termination. For transmission line with characteristic impedance Zo = 50Ω , the termination resistor R8 is 50Ω . The input is self-biased to proper DC offset after the AC coupling. Figure 14. An 8V97053 General Application Schematic Example The loop filter values can be calculated to meet the loop bandwidth requirement. Please refer to the Loop Filter Calculations for detailed calculations. For fast lock mode, the loop filter can be configured as Fast Lock Loop Filter Option 1 or Fast Lock Loop Filter Option 2 shown in Figure 14. Fast Lock Loop Filter Option 1 is Parallel Resistor Configuration. For normal operating mode, only R5 is active and R5 = Rs, where Rs is the resistor value for normal operating mode loop bandwidth. In fast lock mode, the combination of R4 in parallel with R5 is active. For example, in normal operation mode, if the charge pump current is set at 0000 (ICP = 310uA), then, in fast lock mode, the loop bandwidth is set larger by increasing the charge pump current to ICP~5mA (ICP setting = 1111 or 16 times the normal charge pump current). The combination of the R4 and R5 in parallel is 1/4 * Rs. Fast Lock Loop Filter Option 2 is Series Resistor Configuration. For normal operating mode, both R6 and R7 are active and R6 + R7 = Rs. For fast lock mode, only R6 is active. For example, in normal operation mode, if the charge pump current is set at 0000 (ICP = 310uA), then, in fast lock mode, the loop bandwidth is set larger by increasing the charge pump current to ICP~5mA (ICP setting = 1111 or 16 times the normal charge pump current). The sum of R6 and R7 equals to Rs, i.e. R6 + R7 = Rs. R6 = 1/4 * Rs and R7 = 3/4 * Rs. The 8V97053 output pull-up loading can be resistors or inductors. The pull up resistor value is typically 50Ω . Resistor pull up loading covers wide range of output frequencies. For inductor pull up loading, the inductor value is frequency dependent. One inductor value cannot cover all the output frequency range. This example shows the L = 3.9nH that is suitable for approximately 2GHz operating frequency. The output can also drive single ended LO input. Figure 15 shows an example of the 8V97053 output driving single ended LO input of the mixer through an LC balun. The LC balun component values are frequency dependent. These values can be adjusted to optimize the performance. Single ended LO receiver input also can tap to one side of the differential driver using resistor loading or inductor loading. For single ended LO input, both sides of the differential driver still need to be loaded with pull up. The output power level can also be adjusted further through programming. Figure 15. Schematic Example for Driving Single Ended Mixer ### Power Considerations The 8V97053 device was designed and characterized to operate within the ambient industrial temperature range of -40°C to +85°C. The ambient temperature represents the temperature around the device, not the junction temperature. When using the device in extreme cases, such as maximum operating frequency and high ambient temperature, external air flow may be required in order to ensure a safe and reliable junction temperature. Extreme care must be taken to avoid exceeding 125°C junction temperature. The power calculation example below was generated using a typical configuration. For many applications, the power consumption can vary depending on configuration. Please contact IDT technical support for any concerns on calculating the power dissipation for your own specific configuration. Example 1: VCO Frequency Range = 1991MHz to 2846MHz ### 1. Power Dissipation. The total power dissipation for the 8V97053 is the sum of the core power plus the power dissipation in the output driver. The following is the power dissipation for $V_{DD} = 3.465V$, which gives worse case results. Power (core)_{MAX} = $$V_{DD_MAX}$$ * (I_{DDA} + I_{VCO} + I_{CP} + I_{DD_SD} + I_{DDD})_{MAX} = V_{DD_MAX} * (I_{DDA} + I_{DDX})_{MAX} = 3.465V * (105mA + 145mA) = 866.25mW Total Power (with two outputs active at 2dBm output power level) = 866.25mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 34.34°C/W per Table 88. Therefore, Tj for an ambient temperature of 85°C with all outputs active is: $85^{\circ}\text{C} + 0.866\text{W} * 34.34^{\circ}\text{C/W} = 114.74^{\circ}\text{C}$. This is well below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer). Table 88. Thermal Resistance θ_{JA} for 32 Lead VFQFPN, Forced Convection | θ_{JA} by Velocity | | | | |---|-----------|----------|-----------| | Meters per Second | 0 | 1 | 2 | | Multi-Layer PCB, JEDEC Standard Test Boards | 34.34°C/W | 30.7°C/W | 29.12°C/W | Example 2: VCO Frequency Range = 2590MHz to 3624MHz #### 1. Power Dissipation. The total power dissipation for the 8V97053 is the sum of the core power plus the power dissipation in the output driver. The following is the power dissipation for $V_{DD} = 3.465V$, which gives worse case results. Power (core)_{MAX} = $$V_{DD_MAX}$$ * ($I_{DDA} + I_{VCO} + I_{CP} + I_{DD_SD} + I_{DDD}$)_{MAX} = V_{DD_MAX} * ($I_{DDA} + I_{DDX}$)_{MAX} = 3.465V * (85mA + 146.4mA) = 802mW Total Power (with two outputs active at 2dBm output power level) = 802mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 34.34°C/W per Table 88. Therefore, Tj for an ambient temperature of 85°C with all outputs active is: 85°C + 0.802W * 34.34°C/W = 113°C. This is below the limit of 125°C. This
calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer). # Reliability Information Table 89. θ_{JA} vs. Air Flow for a 32-VFQFPN | θ_{JA} vs. Air Flow | | | | |---|-----------|----------|-----------| | Meters per Second | 0 | 1 | 2 | | Multi-Layer PCB, JEDEC Standard Test Boards | 34.34°C/W | 30.7°C/W | 29.12°C/W | Table 90. θ_{JB} vs. Air Flow for a 32-VFQFPN | $\theta_{\sf JB}$ vs. Air ${\sf Flow}^{[a]}$ | | | |--|-----------|--| | Meters per Second | 0 | | | Multi-Layer PCB, JEDEC Standard Test Boards | 0.472°C/W | | [a] Note: $\theta_{\mbox{\scriptsize JB}}$ is independent of airflow. #### **Transistor Count** The 8V97053 transistor count is: 338,270 # Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. www.idt.com/document/psc/32-vfqfpn-package-outline-drawing-50-x-50-x-090-mm-body-epad-315-x-315-mm-nlg32p1 ## Marking Diagram - 1. Lines 1 and 2 indicate the part number. - 2. Line 3: - "#" denotes stepping. - "YY" is the last two digits of the year; "WW" is the work week number that the part was assembled. - "\$" denotes the mark code. ## Ordering Information | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|----------------|--|--------------------|----------------| | 8V97053NLGI | IDT8V97053NLGI | 1 16 (D 110 0) | Tray | -40°C to +85°C | | 8V97053NLGI8 | IDT8V97053NLGI | Lead-free (RoHS 6), 32-VFQFPN , $5 \times 5 \text{ mm}$ | Tape and Reel | -40°C to +85°C | | 8V97053NLGI/W | IDT8V97053NLGI | | Tape and Reel | -40°C to +85°C | Table 91. Pin 1 Orientation in Tape and Reel Packaging | Part Number Suffix | Pin 1 Orientation | Illustration | |--------------------|------------------------|--| | NLGI8 | Quadrant 1 (EIA-481-C) | Correct Pin 1 ORIENTATION CARRIER TAPE TOPSIDE (Round Sprocket Holes) USER DIRECTION OF FEED | | NLGI/W | Quadrant 2 (EIA-481-D) | Correct Pin 1 ORIENTATION CARRIER TAPE TOPSIDE (Round Sprocket Holes) USER DIRECTION OF FEED | # **Revision History** | | Revision Date | Description of Change | |---|--------------------|--| | Ī | September 22, 2018 | Changed the functional value of REV_ID in Table 78 | | | August 7, 2018 | Changed incorrect measurement unit nF to nH in Output Matching and Schematic Example | | | April 23, 2018 | Initial release. | # 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 1 ### NOTE: - 1. ALL DIMENSION ARE IN MM. ANGLES IN DEGREES. - 2. COPLANARITY APPLIE TO THE EXPOSED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.08 MM. - 3. WARPAGE SHALL NOT EXCEED 0.10 MM. - 4. PIN LOCATION IS UNDENTIFIED BY EITHER CHAMFER OR NOTCH. # 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 2 ### RECOMMENDED LAND PATTERN DIMENSION - 1. ALL DIMENSIONS ARE IN MM. ANGLES IN DEGREES. 2. TOP DOWN VIEW. AS VIEWED ON PCB. - 3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN. | Package Revision History | | | |----------------------------------|--------|-----------------| | Date Created Rev No. Description | | | | April 12, 2018 | Rev 02 | New Format | | Feb 8, 2016 | Rev 01 | Added "k: Value | #### **IMPORTANT NOTICE AND DISCLAIMER** RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) ### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/