400 kHz, High Accuracy Current Sensor with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

FEATURES AND BENEFITS

- High operating bandwidth for fast control loops or where high-speed currents are monitored
$\square 400 \mathrm{kHz}$ bandwidth
$\square 2 \mu$ stypical response time
- High accuracy
$\square 1 \%$ maximum sensitivity error over temperature (K series)
$\square 6 \mathrm{mV}$ maximum offset voltage over temperature
\square Non-ratiometric operation with $\mathrm{V}_{\text {REF }}$ output
\square Low noise LA package
$\diamond 160 \mathrm{mV}_{\mathrm{RMS}}$ for 3.3 V supply
$\diamond 124 \mathrm{mV}_{\mathrm{RMS}}$ for 5 V supply
\square Differential sensing for high immunity to external magnetic fields
\square No magnetic hysteresis
- Adjustable fast overcurrent fault
$\square 1 \mu$ s typical response time
\square Pin adjustable threshold
- Externally configurable gain settings using two logic pins
\square Four adjustable gain levels for increased design flexibility
Continued on the next page...
PACKAGE:
16-Pin SOICW (suffix MA/LA)

DESCRIPTION

The ACS37002 is a fully integrated Hall-effect current sensor in an SOICW-16 package that is factory-trimmed to provide high accuracy over the entire operating range without the need for customer programming. The current is sensed differentially by two Hall plates that subtract out interfering external commonmode magnetic fields.

The package construction provides high isolation by magnetically coupling the field generated by the current in the conductor to the monolithic Hall sensor IC which has no physical connection to the integrated current conductor. The MA package is optimized for higher isolation with withstand voltage, $4.8 \mathrm{kV}_{\mathrm{RMS}}$, and $0.85 \mathrm{~m} \Omega$ conductor resistance. The LA package is optimized for lower noise with $3.6 \mathrm{kV}_{\mathrm{RMS}}$ withstand voltage and $1 \mathrm{~m} \Omega$ conductor resistance.

The ACS37002 has functional features that are externally configurable and robust without the need for programming. Two logic gain selection pins can be used to configure the device to one of four defined sensitivities and corresponding current ranges. A fast overcurrent fault output provides shortcircuit detection for system protection with a fault threshold that is proportional to the current range and can be set with an analog input. The reference pin provides a stable voltage that corresponds to the 0 A output voltage. This reference voltage allows for differential measurements as well as a device-referred voltage to set the overcurrent fault threshold.

Figure 1: Typical Bidirectional Application For more application circuits, refer to the Application and Theory section

FEATURES AND BENEFITS (continued)

\square Enabling measurement ranges from 10 to 133 A in both unidirectional and bidirectional modes

- Low internal primary conductor resistance $0.85 \mathrm{~m} \Omega$ (MA) and $1 \mathrm{~m} \Omega(\mathrm{LA})$ for better power efficiency
- UL60950-1 (ed. 2) and UL 62368 (ed. 1) certification, highly isolated compact SOICW-16 surface mount package (MA)
$\square 4.8 \mathrm{kV}_{\mathrm{RMS}}$ rated isolation voltage
$\square 1097 \mathrm{~V}_{\mathrm{RMS}} / 1550 \mathrm{~V}_{\mathrm{DC}}$ basic isolation voltages
$\square 565 \mathrm{~V}_{\mathrm{RMS}} / 880 \mathrm{~V}_{\mathrm{DC}}$ reinforced isolation voltages
- Wide operating temperature, $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- AEC-Q100 Grade 0, automotive qualified

CB Certificate number:
US-32210-M3-UL
US-36315-UL

SELECTION GUIDE

Part Number (click number to go to Performance Characteristics)	Current Sensing Range, $\mathrm{I}_{\mathrm{PR}}(\mathrm{A})$	Sensitivity ${ }^{[1]}$ (mV/A)	Nominal \mathbf{V}_{Cc} (V)	Optimized Temp. Range $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Packing ${ }^{[2]}$
MA Package, 16-Pin SOICW					
ACS37002LMABTR-050B5	$\pm 33, \pm 40, \pm 50, \pm 66$	60, 50, 40, 30	5	-40 to 150	1000 pieces per 13-inch reel
ACS37002LMABTR-066B5	$\pm 66, \pm 80 \pm 100, \pm 133$	30, 25, 20, 15			
ACS37002LMABTR-050U5	33, 40, 50, 66	120, 100, 80, 60			
ACS37002LMABTR-066U5	66, 80, 100, 133	60, 50, 40, 30			
ACS37002LMABTR-050B3	$\pm 33, \pm 40, \pm 50, \pm 66$	39.6, 33, 26.4, 19.8	3.3		
ACS37002LMABTR-066B3	$\pm 66, \pm 80, \pm 100, \pm 133$	19.8, 16.5, 13.2, 9.9			
ACS37002LMABTR-050U3	33, 40, 50, 66	79.2, 66, 52.8, 39.6			
ACS37002LMABTR-066U3	66, 80, 100, 133	39.6, 33, 26.4, 19.8			
ACS37002KMABTR-050B5	$\pm 33, \pm 40, \pm 50, \pm 66$	60, 50, 40, 30	5	-40 to $125{ }^{[3]}$	
ACS37002KMABTR-050B3	$\pm 33, \pm 40, \pm 50, \pm 66$	39.6, 33, 26.4, 19.8	3.3		
LA Package [4], 16-Pin SOICW					
ACS37002LLAATR-015B5	$\pm 10, \pm 12, \pm 15, \pm 20$	200,166.6,133.3,100	5	-40 to 150	1000 pieces per 13 -inch reel
ACS37002LLAATR-025B5	$\pm 25, \pm 30, \pm 37.5, \pm 50$	80, 66.6, 53.3, 40			
ACS37002LLAATR-015B3	$\pm 10, \pm 12, \pm 15, \pm 20$	132, 110, 88, 66	3.3		
ACS37002LLAATR-025U3	25, 30, 37.5, 50	105.6, 88, 70.4, 52.8			

[^0]Table of Contents
Features and Benefits.. 1 Sensitivity Error ($\mathrm{E}_{\text {sens }}$) 29
Description 1
Packages 1
Selection Guide 2
Absolute Maximum Ratings 4
Isolation Characteristics 4
MA Package Specific Performance 4
LA Package Specific Performance 4
Pinout Diagram and Terminal List 5
Functional Block Diagram 6
Common Electrical Characteristics 7
Performance Characteristics 10
Functional Description 24
Power-On Reset Operation 24
Power-On 24
Power-Off 24
Power-On Timing 24
Power-On Reset (POR) 24
Power-On Delay ($t_{\text {pod }}$). 24
Overvoltage and Undervoltage Detection 25
Undervoltage Detection Voltage Thresholds $\left(\mathrm{V}_{\mathrm{UVD}(\mathrm{H} / \mathrm{L})}\right)$ 25
Overvoltage Detection Voltage Thresholds ($\mathrm{V}_{\mathrm{OVD}(\mathrm{H} / \mathrm{L})}$) 25
Overvoltage/Undervoltage
Detection Hysteresis (VovDHys, $\mathrm{V}_{\text {UVDHys }}$) 26
Overvoltage and Undervoltage
Enable and Disable Time ($\mathrm{t}_{\mathrm{OVD}(\mathrm{E} / \mathrm{D})}$, $\mathrm{tuvD}_{\text {(E/D) })}$ 26
Supply Zener Clamp Voltages 26
Absolute Maximum Ratings 27
Forward and Reverse Supply Voltage 27
Forward and Reverse Output Voltage 27
Forward and Reverse Reference/Fault Voltage 27
Output Source and Sink Current 27
Definitions of Operating and Performance Characteristics 28
Zero Current Voltage Output (VIOUT(Q), QVO) 28
QVO Temperature Drift (V_{QE}) 28
Reference Voltage ($\mathrm{V}_{\mathrm{REF}}$) 28
Reference Voltage Temperature Drift (VRE) 28
Offset Voltage (VOE) 28
Output Saturation Voltage ($\mathrm{V}_{\text {SAT(HIGH/LOW) }}$) 28
Output Voltage Operating Range ($\mathrm{V}_{\mathrm{OOR}}$) 28
Sensitivity (Sens) 29
Gain Selection Pins 29
Full Scale (FS) 29
Nonlinearity ($\mathrm{E}_{\text {LIN }}$) 29
Total Output Error ($\mathrm{E}_{\text {TOT }}$) 30
Power Supply Offset Error (V_{PS}) 30
Offset Power Supply Rejection Ratio (PSRR ${ }_{0}$) 30
Power Supply Sensitivity Error (EPS) 30
Sensitivity Power Supply Rejection Ratio (PSRR ${ }_{\mathrm{S}}$) 30
Fault Behavior 31
Overcurrent Fault (OCF) 31
Overcurrent Fault Operating Range/Point (locF-OR, locf-OP) 31
Overcurrent Fault Hysteresis (locF-Hyst) 31
Voltage Overcurrent Pin (VOC) 31
Overcurrent Fault Error (E $\mathrm{E}_{\text {OcF }}$) 32
Overcurrent Fault Response Time ($\mathrm{t}_{\mathrm{OCF}}$) 32
Overcurrent Fault Reaction Time (tocF-R 32
Overcurrent Fault Mask Time (tocF-MASK) 32
Overcurrent Fault Hold Time (tocF-hold). 32
Overcurrent Fault Persist 32
OCF Disable 32
Dynamic Response Parameters 33
Propagation Time (t_{pd}) 33
Rise Time (t_{R}) 33
Response Time ($t_{\text {RESPONSE }}$) 33
Temperature Compensation 33
Temperature Compensation Update Rate 33
Application and Theory 34
Application Circuits 34
Theory and Functionality - VOC and OCF 35
VOC Driven by Non-Inverting Buffered VREF 35
Power Supply Decoupling Capacitor and Output Capacitive Loads 35
Dynamically Change Gain in a System 36
Thermal Performance 37
Thermal Rise vs. Primary Current 37
Evaluation Board Layout 37
Package Outline Drawings 38
MA Package 38
LA Package 39

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Unit
Forward Supply Voltage	V_{CC}		6.5	V
Reverse Supply Voltage	$\mathrm{V}_{\mathrm{RCC}}$		-0.5	V
Forward Output Voltage	$\mathrm{V}_{\text {FIOUT }}$	Applies to $\mathrm{V}_{\text {IOUT }}, \mathrm{V}_{\text {OCF }}$, and $\mathrm{V}_{\text {REF }}$	$\left(\mathrm{V}_{\mathrm{CC}}+0.7\right) \leq 6.5$	V
Reverse Output Voltage	$\mathrm{V}_{\text {RIOUT }}$	Applies to $\mathrm{V}_{\text {IOUT }}, \mathrm{V}_{\text {OCF }}$, and $\mathrm{V}_{\text {REF }}$	-0.5	V
Forward Input Voltage	V_{OI}	Applies to GAIN_SELO, GAIN_SEL1, and VOC	$\left(\mathrm{V}_{\mathrm{CC}}+0.7\right) \leq 6.5$	V
Reverse Input Voltage	V_{RI}	Applies to GAIN_SELO, GAIN_SEL1, and VOC	-0.5	V
Operating Ambient Temperature	T_{A}		-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {Stg }}$		-65 to 165	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}(\max)}$		165	${ }^{\circ} \mathrm{C}$

ISOLATION CHARACTERISTICS

Characteristic	Symbol	Notes	Rating	Unit
Dielectric Surge Voltage	V SURGE	Tested ± 5 pulses at $2 /$ minute in compliance to IEC $61000-4-5$ $1.2 \mu \mathrm{~s}$ (rise) $/ 50 \mu \mathrm{~s}$ (width)	10	kV
Surge Current ${ }^{[1]}$	I SURGE	Tested in compliance to IEC 61000-4-5 $8 \mu \mathrm{~s}$ (rise) $/ 20 \mu \mathrm{~s}$ (width)	13	kA
Comparative Track Index	CTI	Material Group II	400 to 599	V

${ }^{[1]}$ Certification pending.

MA PACKAGE SPECIFIC PERFORMANCE

| Characteristic | Symbol | Notes | Rating | Unit |
| :--- | :---: | :--- | :---: | :---: | :---: |
| Distance Through Insulation | DTI | Minimum internal distance through insulation | 90 | $\mu \mathrm{~m}$ |
| Dielectric Strength Test Voltage | $\mathrm{V}_{\text {ISO }}$ | Agency type-tested for 60 seconds per UL 60950-1 (edition 2) and
 $62368-1$ (edition 1). Production tested at 3125 $\mathrm{V}_{\mathrm{RMS}}$ for 1 second in
 accordance with UL 60950-1 (edition 2) and 62368-1 (edition 1) | 5000 | $\mathrm{~V}_{\mathrm{RMS}}$ |
| Working Voltage for Basic Isolation | $\mathrm{V}_{\mathrm{WVBI}}$ | Maximum approved working voltage for basic (single) isolation
 according toUL 60950-1 (edition 2) and 62368-1 (edition 1) | 1550 | $\mathrm{~V}_{\mathrm{PK}}$ or V_{DC} |
| | | 1097 | $\mathrm{~V}_{\mathrm{RMS}}$ | |
| Working Voltage for Reinforced
 Isolation | $\mathrm{V}_{\mathrm{WVRI}}$ | Maximum approved working voltage for reinforced isolation
 according to UL 60950-1 (edition 2) and 62368-1 (edition 1) | 800 | $\mathrm{~V}_{\mathrm{PK}}$ or V_{DC} |
| Clearance | D_{Cl} | Minimum distance through air from IP leads to signal leads | 565 | $\mathrm{~V}_{\mathrm{RMS}}$ |
| Creepage | D_{cr} | Minimum distance along package body from IP leads to signal leads | 7.9 | mm |

LA PACKAGE SPECIFIC PERFORMANCE

Characteristic	Symbol	Notes	Rating	Unit
Distance Through Insulation	DTI	Minimum internal distance through insulation	45	$\mu \mathrm{~m}$
Dielectric Strength Test Voltage	$\mathrm{V}_{\text {ISO }}$	Agency type-tested for 60 seconds per UL 60950-1 (edition 2). Production tested at 3000 $\mathrm{V}_{\mathrm{RMS}}$ for 1 second in accordance with UL 60950-1	3600	$\mathrm{~V}_{\mathrm{RMS}}$
Working Voltage for Basic Isolation ${ }^{[1]}$	$\mathrm{V}_{\text {WVBI }}$	Maximum approved working voltage for basic (single) isolation according to UL 60950-1 (edition 2)	870	$\mathrm{~V}_{\mathrm{PK} \text { or }} \mathrm{V}_{\mathrm{DC}}$
Clearance ${ }^{[1]}$	D_{Cl}	Minimum distance through air from IP leads to signal leads	616	$\mathrm{~V}_{\mathrm{RMS}}$
Creepage [1]	D_{Cr}	Minimum distance along package body from IP leads to signal leads	7.5	mm

[^1]
PINOUT DIAGRAM AND TERMINAL LIST TABLE

Figure 2: MA/LA Pinout Diagram

Terminal List Table

Number	Name	Description
$1,2,3,4$	IP+	Terminals for current being sensed; fused internally
$5,6,7,8$	IP-	Terminals for current being sensed; fused internally
9	$\overline{\text { OCF }}$	Overcurrent fault, open-drain
10	VCC	Device power supply terminal
11	VOC	Overcurrent fault operation point input
12	VIOUT	Analog output representing the current flowing through I_{P}
13	VREF	Zero current voltage reference
14	GAIN_SEL_1	Gain selection bit 1
15	GND	Device ground terminal
16	GAIN_SEL_0	Gain selection bit 0

Figure 3: Functional Block Diagram

COMMON ELECTRICAL CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $C_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ or 3.3 V , unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Supply Voltage	V_{cc}	5 V devices only	4.5	5	5.5	V
		3.3 V devices only	3.15	3.3	3.6	V
Supply Current	I_{cc}	No load on VIOUT or VREF; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	13	18	mA
		No load on VIOUT or VREF; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	12	15	mA
Supply Bypass Capacitor	$\mathrm{C}_{\text {BYPASS }}$	VCC to GND recommended	0.1	-	-	$\mu \mathrm{F}$
Output Resistive Load	R_{L}	VIOUT to GND, VIOUT to VCC	10	-	-	$\mathrm{k} \Omega$
Output Capacitive Load	C_{L}	VIOUT to GND	-	1	6	nF
Reference Resistive Load	$\mathrm{R}_{\text {VREF }}$	VREF to GND (recommended to supply VOC); VREF to VCC	10	62.7	-	k ת
Reference Capacitive Load	$\mathrm{C}_{\text {VREF }}$	VREF to GND	-	-	6	nF
Fault Pull-Up Resistance	R_{PU}		4.7	-	500	$\mathrm{k} \Omega$
VOC Capacitive Load	$\mathrm{C}_{\text {Voc }}$	VOC to GND	-	-	1	nF
Primary Conductor Resistance	$\mathrm{R}_{\text {IP }}$	$\mathrm{MA}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.85	-	$\mathrm{m} \Omega$
		$L A, T_{A}=25^{\circ} \mathrm{C}$	-	1	-	$\mathrm{m} \Omega$
Primary Conductor Inductance	$\mathrm{L}_{\text {IP }}$		-	4.2	-	nH
Power-On Reset Voltage	$\mathrm{V}_{\mathrm{POR}(\mathrm{H})}$	V_{CC} rising [1]	2.6	2.9	3.1	V
	$\mathrm{V}_{\text {POR(L) }}$	V_{CC} falling ${ }^{[1]}$	2.2	2.5	2.8	V
POR Hysteresis	$\mathrm{V}_{\text {POR(HYS) }}$		250	-	-	mV
Power-On Time	$\mathrm{t}_{\text {POD }}$	Time from V_{CC} rising $\geq \mathrm{V}_{\mathrm{UVD}(\mathrm{DIS})}$ after a POR event until power-on; VREF, OCF, VIOUT	100	-	-	$\mu \mathrm{s}$
Undervoltage Detection (UVD) Threshold [2]	$\mathrm{V}_{\text {UVD(L) }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ falling [1]	3.8	-	4.3	V
	$\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ rising ${ }^{[1]}$	4	-	4.5	V
UVD Hysteresis [2]	$\mathrm{V}_{\text {UVD(HYS }}$		-	250	-	mV
UVD Delay Time ${ }^{[2]}$	$\mathrm{t}_{\mathrm{dUVD}(\mathrm{E})}$	Time from $\mathrm{V}_{\text {CC }}$ falling $\leq \mathrm{V}_{\text {UVD(EN) }}$ until UVD asserts	35	64	120	$\mu \mathrm{s}$
	$\mathrm{t}_{\mathrm{dUVD}(\mathrm{D})}$	Time from V_{CC} rising $\geq \mathrm{V}_{\text {UVD(DIS }}$) until UVD clears	-	7	-	$\mu \mathrm{s}$
Overvoltage Detection (OVD) Threshold	$\mathrm{V}_{\text {OVD(H) }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {CC }}$ rising ${ }^{[1]}$	6.1	6.3	6.8	V
	$\mathrm{V}_{\mathrm{OVD}(\mathrm{L})}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ falling ${ }^{[1]}$	5.6	5.8	6.1	V
Overvoltage Detection Hysteresis	$\mathrm{V}_{\text {OVD(HYS) }}$		-	660	-	mV
OVD Delay Time	$\mathrm{t}_{\mathrm{dOVD}(\mathrm{E})}$	Time from $\mathrm{V}_{\text {CC }}$ rising $\geq \mathrm{V}_{\text {OVD(EN) }}$ until OVD asserts	35	90	120	$\mu \mathrm{s}$
	$\mathrm{t}_{\mathrm{dOV}(\mathrm{D})}$	Time from V_{CC} falling $\leq \mathrm{V}_{\mathrm{OVD}(\mathrm{DIS})}$ until OVD clears	-	7	-	$\mu \mathrm{s}$

Continued on the next page...

COMMON PERFORMANCE CHARACTERISTICS (VIOUT): Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{C}_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ or 3.3 V , unless otherwise specified

Characteristic	Symbol	Test Conditions		Min.	Typ.	Max.	Units
OUTPUT SIGNAL CHARACTERISTICS ($\mathrm{V}_{\text {IOUT }}$)							
Saturation Voltage	$\mathrm{V}_{\text {SAT }(\mathrm{H})}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND		$\mathrm{V}_{\mathrm{CC}}-0.25$	-	-	V
	$\mathrm{V}_{\text {SAT }(L)}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CC}		-	-	0.15	V
Output Operating Range	$\mathrm{V}_{\text {OOR }}$	5 V linear operating range		0.5	-	4.5	V
		3.3 V linear operating range		0.3	-	3.0	V
Output Current Limit	$\mathrm{l}_{\text {Out(src) }}$	$\mathrm{V}_{\text {IOUT }}$ shorted to GND		-	25	-	mA
	$\mathrm{l}_{\text {OUT(snk) }}$	$\mathrm{V}_{\text {IOUT }}$ shorted to V_{CC}		-	25	-	mA
Output Drive	lout			4.8	-	-	mA
Internal Bandwidth	BW	Small signal $-3 \mathrm{~dB}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF}$		-	400	-	kHz
Rise Time	t_{R}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF}, 10 \%-90 \%$ of 1 V output swing		-	0.7	2.5	$\mu \mathrm{s}$
Response Time	$\mathrm{t}_{\text {RESPONSE }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF}, 90 \%$ input to 90% of 1 V output swing		-	1.1	2.5	$\mu \mathrm{s}$
Propagation Delay	t_{pd}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF}, 20 \%$ input to 20% of 1 V output swing		-	0.7	2	$\mu \mathrm{s}$
Noise Density	${ }^{\text {ND }}$	Input-referenced noise density; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	MA Package	-	350	-	$\mu \mathrm{A} / \sqrt{ } \mathrm{Hz}$
			LA Package	-	155	-	$\mu \mathrm{A} / \sqrt{ } \mathrm{Hz}$
		Input-referenced noise density;$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	MA Package	-	450	-	$\mu \mathrm{A} / \sqrt{ } \mathrm{Hz}$
			LA Package	-	200	-	$\mu \mathrm{A} / \sqrt{ } \mathrm{Hz}$
Noise	I_{N}	Input-referenced noise at 400 kHz ;$\mathrm{T}_{\mathrm{A}}^{\prime}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	MA Package	-	277	-	$\mathrm{mA}_{\text {RMS }}$
			LA Package	-	124	-	$\mathrm{mA}_{\text {RMS }}$
		Input-referenced noise at 400 kHz ; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=5.7 \mathrm{nF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	MA Package	-	357	-	$\mathrm{mA}_{\text {RMS }}$
			LA Package	-	160	-	$\mathrm{mA}_{\text {RMS }}$
Nonlinearity	$\mathrm{E}_{\text {LIN }}$			-	± 0.75	-	\%
Power Supply Rejection Ratio Offset	PSRR_{0}	DC to $1 \mathrm{kHz}, 100 \mathrm{mV}$ pk-pk ripple around $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} \text { (typ) }}$, $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}$, change in V_{OE}		-	-40	-	dB
		1 to $100 \mathrm{kHz}, 100 \mathrm{mV}$ pk-pk ripple around $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\mathrm{typ})}$, $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}$, change in V_{OE}		-	-30	-	dB
Power Supply Rejection Ratio Sens	PSRR_{S}	DC to $1 \mathrm{kHz}, 100 \mathrm{mV}$ pk-pk ripple around $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\mathrm{typ})}$, $\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\mathrm{MAX}) \text {, }}$ change in Sens		-	-15	-	dB
		1 to 100 kHz , 100 mV pk-pk ripple around $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\text { typ })}$, $\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\mathrm{MAX})}$, change in Sens		-	-6	-	dB
Power Supply Offset Error	$\mathrm{V}_{\text {OE(PS) }}$	$\mathrm{V}_{\mathrm{CC}} @ \mathrm{~V}_{\mathrm{CC}(\text { MIN })}$ or $\mathrm{V}_{\mathrm{CC}(\text { MAX })}$		-10	-	10	mV
Power Supply Sensitivity Error	$\mathrm{E}_{\text {SENS(PS) }}$	$\mathrm{V}_{\mathrm{CC}} @ \mathrm{~V}_{\mathrm{CC}(\mathrm{MIN})} \text { or } \mathrm{V}_{\mathrm{CC}(\mathrm{MAX})}$		-1.5	-	1.5	\%
Common-Mode Field Rejection	CMFR	Input-referred error due to common-mode field		-	4	-	mA/G

Continued on the next page...

COMMON PERFORMANCE CHARACTERISTICS (VREF, FAULT, GAIN_SEL): Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{BYPASS}}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ or 3.3 V , unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.	Max.	Units
REFERENCE OUTPUT CHARACTERISTICS (VREF)						
Zero Current Reference Voltage	$\mathrm{V}_{\text {REF(BI) }}$	Bidirectional; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.49	2.5	2.51	V
		Bidirectional; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	1.64	1.65	1.66	V
	$\mathrm{V}_{\text {REF (UNI) }}$	Unidirectional; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0.49	0.5	0.51	V
		Unidirectional; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.32	0.33	0.34	V
Reference Source Current Limit	$\mathrm{I}_{\text {REF (SRC) }}$	Maximum current $\mathrm{V}_{\text {REF }}$ can passively source	-	25	-	mA
	$\mathrm{I}_{\text {REF(SNK) }}$	Maximum current $\mathrm{V}_{\text {REF }}$ can passively sink	-	-25	-	mA
Reference Slew Rate	$\mathrm{SR}_{\text {REF }}$	$\mathrm{C}_{\text {VREF }}=0 \mathrm{nF}, \mathrm{R}_{\text {VREF }}=0 \Omega$	0.8	-	-	$\mathrm{V} / \mathrm{\mu s}$
OVERCURRENT FAULT CHARACTERISTICS (OCF)						
OCF On Voltage ${ }^{[4]}$	$\mathrm{V}_{\text {FAULT-ON }}$	$\mathrm{R}_{\mathrm{PU}}=4.7 \mathrm{k} \Omega$, under fault condition	-	0.07	0.4	V
OCF Sink Current ${ }^{[4]}$	IOCF(SNK)	No Fault	-	100	-	nA
		Fault Assertion	0.01	-	1.1	mA
VOC Operating Voltage Range	$\mathrm{V}_{\mathrm{voc}}$	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	0.5	-	2	V
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.33	-	1.32	V
Fault Error	$\mathrm{E}_{\text {OCF }}$		-10	± 3	10	\% ${ }_{\text {OCF-OP }}$
OCF Hysteresis	$\mathrm{l}_{\text {OCF(HYS) }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	6	-	\%FS
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	9	-	\%FS
OCF Reaction Time ${ }^{[4]}$	$\mathrm{t}_{\text {OCF-R }}$	Time from $\mathrm{I}_{\text {OCF-OP, }}$ with a $1.2 \times \mathrm{I}_{\text {OCF-OP }}$ until fault asserts	-	1	1.5	$\mu \mathrm{s}$
OCF Mask [4]	tocF-MASK	Time $\mathrm{I}_{\text {OCF-OP }}$ must be present after $\mathrm{t}_{\text {OCF-R }}$ for fault assertion ${ }^{[3]}$	0	0	3	$\mu \mathrm{s}$
OCF Response Time ${ }^{[4]}$	$\mathrm{t}_{\text {OCF }}$	$\mathrm{t}_{\text {OCF-MASK }}=0.5 \mu \mathrm{~s}$	-	1	1.5	$\mu \mathrm{s}$
OCF Hold Time ${ }^{[4]}$	tocF-HOLD	Minimum duration of FAULT assertion [3]	0	0	5	ms
GAIN SELECTION PIN CHARACTERISTICS (GAIN_SEL0, GAIN_SEL1)						
Gain Select Internal Resistor	$\mathrm{R}_{\text {GSint }}$		-	1	-	$\mathrm{M} \Omega$
GAIN_SEL Logic Input Voltage	$\mathrm{V}_{\mathrm{H} \text { (SEL) }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.75	-	-	V
		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$	2.25	-	-	V
	$\mathrm{V}_{\text {L(SEL) }}$		-	-	0.5	V
Leakage Current ${ }^{[4]}$	$\mathrm{I}_{\text {SEL(SNK) }}$		-	-	± 10	$\mu \mathrm{A}$

${ }^{[1]} \mathrm{V}_{\mathrm{CC}}$ rate $+1 \mathrm{~V} / \mathrm{ms}$, for best accuracy.
${ }^{[2]}$ Only enabled on 5 V devices.
${ }^{\text {[3] }}$ Typical value is factory default.
${ }^{\text {[4] }}$ Guaranteed by design and bench validated

ACS37002LMABTR-050B5

ACS37002LMABTR-050B5 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	40	50
	0	1	50	40
	1	0	60	33.3
	1	1	30	66.7

ACS37002LMABTR-050B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $\mathrm{C}_{\mathrm{BYPASS}}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-50	-	50	A
		Gain Sel 01	-40	-	40	A
		Gain Sel 10	-33.3	-	33.3	A
		Gain Sel 11	-66.7	-	66.7	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	40	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	50	-	mV/A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	60	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	30	-	mV / A
Overcurrent Fault Operating Range	locf-OR	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2.5	-	V

TOTAL ERROR (VIOUT(ACTUAL) $\left.-\left(\operatorname{Sens}_{(I D E A L)} \times I_{P R}+V_{R E F}\right)\right) /\left(\operatorname{Sens}_{(I D E A L)} \times I_{P R}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$V_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\mathrm{max})}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	$\mathrm{E}_{\text {SENS_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_LTD }}$	$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$V_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[^2]${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma
${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

Allegro MicroSystems

ACS37002LMABTR-066B5

ACS37002LMABTR-066B5 Gain_Sel Pin Performance Key
Parameter (Units) Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean) Sens (mV/A) Type Digital Input Digital Input Calculation Selection Combination 0 0 30 0 1 25

ACS37002LMABTR-066B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$,
$C_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-66.7	-	66.7	A
		Gain Sel 01	-80	-	80	A
		Gain Sel 10	-100	-	100	A
		Gain Sel 11	-133.3	-	133.3	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	30	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	25	-	mV/A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	20	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	15	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(} \mathrm{Q} \text {) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2.5	-	V

TOTAL ERROR (VIOUT(ACTUAL) $-\left(\right.$ Sens $\left.\left._{(I D E A L)} \times I_{\text {PR }}+V_{\text {REF }}\right)\right) /\left(\right.$ Sens $\left._{(I D E A L)} \times I_{P R}\right) \times 100$ AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$\mathrm{V}_{\text {REFactual }}-\mathrm{V}_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$V_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$V_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LtD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	$\mathrm{E}_{\text {SENS_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {Oe_Ltd }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$\mathrm{V}_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[^3]
ACS37002LMABTR-050U5

ACS37002LMABTR-050U5 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	80	50
	0	1	100	40
	1	0	120	33.3
	1	1	60	66.7

ACS37002LMABTR-050U5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $\mathrm{C}_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	0	-	50	A
		Gain Sel 01	0	-	40	A
		Gain Sel 10	0	-	33.3	A
		Gain Sel 11	0	-	66.7	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	80	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	100	-	mV/A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	120	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	60	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	25	50	100	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Unidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.5	-	V

TOTAL ERROR ($\left.\mathrm{V}_{\text {IOUT(ACTUAL) }}-\left(\operatorname{Sens}_{(\text {IDEAL) }} \times I_{\text {PR }}+\mathrm{V}_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(\text {IDEAL) }} \times I_{\text {PR }}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$\mathrm{V}_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$V_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	$\mathrm{E}_{\text {SENS_LTD }}$	$I_{P}=I_{P R(\text { max })}, T_{A}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_LTD }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$V_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

${ }^{[1]}$ Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

ACS37002LMABTR-066U5

ACS37002LMABTR-066U5 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	60	66.7
	0	1	50	80
	1	0	40	100
	1	1	30	133.3

ACS37002LMABTR-066U5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $\mathrm{C}_{\mathrm{BYPASS}}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	0	-	66.7	A
		Gain Sel 01	0	-	80	A
		Gain Sel 10	0	-	100	A
		Gain Sel 11	0	-	133.3	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	60	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	50	-	mV/A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	40	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	30	-	mV/A
Overcurrent Fault Operating Range	locf-OR	Typ. = factory-programmed default, FS = Full-Scale	25	50	100	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Unidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.5	-	V

TOTAL ERROR (V $\mathrm{V}_{\text {IOUT(ACTUAL) }}-\left(\right.$ Sens $\left._{(\text {IDEAL) }} \times \mathrm{I}_{\mathrm{PR}}+\mathrm{V}_{\text {REF }}\right)$) $/\left(\right.$ Sens $\left._{(\text {IDEAL) }} \times \mathrm{I}_{\mathrm{PR}}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\mathrm{max})}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$\mathrm{V}_{\text {REFactual }}-\mathrm{V}_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	V_{OE}	$V_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$V_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LtD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	$\mathrm{E}_{\text {SENS_LTD }}$	$I_{P}=I_{P R(\text { max })}, T_{A}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {Oe_Ltd }}$	$V_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$V_{\text {QE_LTD }}$	$V_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

${ }^{\text {[1] }}$ Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ACS37002LMABTR-050B3

ACS37002LMABTR-050B3 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	26.4	50
	0	1	33	40
	1	0	39.6	33.3
	1	1	19.8	66.7

ACS37002LMABTR-050B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $C_{B Y P A S S}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-50	-	50	A
		Gain Sel 01	-40	-	40	A
		Gain Sel 10	-33.3	-	33.3	A
		Gain Sel 11	-66.7	-	66.7	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	26.4	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	33	-	mV / A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	39.6	-	mV/A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	19.8	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.65	-	V

TOTAL ERROR (VIOUT(ACTUAL) $-\left(\right.$ Sens $\left.\left._{(I D E A L)} \times I_{P R}+V_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(I D E A L)} \times I_{P R}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\mathrm{max})}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$\mathrm{V}_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	$\mathrm{E}_{\text {SENS_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$\mathrm{V}_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_Ltd }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$\mathrm{V}_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[^4]Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.

ACS37002LMABTR-066B3

ACS37002LMABTR-066B3 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	19.8	66.7
	0	1	16.5	80
	1	0	13.2	100
	1	1	9.9	133.3

ACS37002LMABTR-066B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $C_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-66.7	-	66.7	A
		Gain Sel 01	-80	-	80	A
		Gain Sel 10	-100	-	100	A
		Gain Sel 11	-133.3	-	133.3	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	19.8	-	mV / A
		Gain Sel 01; $I_{\text {PR(min) }}<I_{P}<I_{P R(\text { max })}$	-	16.5	-	mV/A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	13.2	-	mV/A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	9.9	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.65	-	V

TOTAL ERROR (VIOUT(ACTUAL) $\left.-\left(\operatorname{Sens}_{(I D E A L)} \times I_{\text {PR }}+V_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(I D E A L)} \times I_{\text {PR }}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{P}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$\mathrm{V}_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-\mathrm{V}_{\text {REFideal, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$\mathrm{V}_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	$\mathrm{E}_{\text {SENS_LTD }}$	$I_{P}=I_{P R(\text { max })}, T_{A}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_Ltd }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$V_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

ACS37002LMABTR-050U3

ACS37002LMABTR-050U3 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	52.8	50
	0	1	66	40
	1	0	79.2	33.3
	1	1	39.6	66.7

ACS37002LMABTR-050U3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $\mathrm{C}_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ${ }^{[1]}$	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	0	-	50	A
		Gain Sel 01	0	-	40	A
		Gain Sel 10	0	-	33.3	A
		Gain Sel 11	0	-	66.7	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	52.8	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	66	-	mV / A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	79.2	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	39.6	-	mV/A
Overcurrent Fault Operating Range	locf-OR	Typ. = factory-programmed default, FS = Full-Scale	25	50	100	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Unidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.33	-	V

TOTAL ERROR ($\left.\mathrm{V}_{\text {IOUT(ACTUAL) }}-\left(\operatorname{Sens}_{(\text {IDEAL) }} \times I_{\text {PR }}+\mathrm{V}_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(\text {IDEAL) }} \times I_{\text {PR }}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$V_{\text {IOUT(} Q \text {) }}-V_{\text {REF, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	V_{QE}	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q), }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	$\mathrm{E}_{\text {SENS_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_LTD }}$	$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$\mathrm{V}_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

${ }^{[1]}$ Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

ACS37002LMABTR-066U3

ACS37002LMABTR-066U3 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)
Type	Digital Input	Digital Input	Calculation
Selection Combination	0	0	39.6
	0	1	33

ACS37002LMABTR-066U3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $\mathrm{C}_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ${ }^{[1]}$	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	0	-	66.7	A
		Gain Sel 01	0	-	80	A
		Gain Sel 10	0	-	100	A
		Gain Sel 11	0	-	133.3	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	39.6	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	33	-	mV / A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	26.4	-	mV/A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	19.8	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	25	50	100	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Unidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.33	-	V

TOTAL ERROR ($\left.\mathrm{V}_{\text {IOUT(ACTUAL) }}-\left(\operatorname{Sens}_{(\text {IDEAL }} \times I_{P R}+V_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(\text {IDEAL }} \times I_{P R}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{P}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	-0.5 ± 0.6	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	-1 ± 4	8	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$\mathrm{V}_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 4	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-3.6	-1.6 ± 1.2	3.6	\%
Sensitivity Error Including Lifetime Drift	ESENS_LTD	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.4	-1.5 ± 1.1	3.4	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-\mathrm{V}_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_Ltd }}$	$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$V_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

Allegro MicroSystems

ACS37002KMABTR-050B5

AACS37002KMABTR-050B5 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	40	50
	0	1	50	40
	1	0	60	33.3
	1	1	30	66.7

ACS37002KMABTR-050B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, $C_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ${ }^{[1]}$	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-50	-	50	A
		Gain Sel 01	-40	-	40	A
		Gain Sel 10	-33.3	-	33.3	A
		Gain Sel 11	-66.7	-	66.7	A
Sensitivity	Sens	Gain Sel 00; $I_{\text {PR(min) }}<I_{P}<I_{P R(\text { max })}$	-	40	-	mV / A
		Gain Sel 01; $I_{P R(\text { min }}<I_{P}<I_{P R(\text { max })}$	-	50	-	mV / A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	60	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	30	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2.5	-	V

TOTAL ERROR (VIOUT(ACTUAL) $\left.-\left(\operatorname{Sens}_{(I D E A L)} \times I_{\text {PR }}+V_{R E F}\right)\right) /\left(\operatorname{Sens}_{(I D E A L)} \times I_{P R}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1	-0.3 ± 0.5	1	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-8	± 5	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	V_{QE}	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$\mathrm{V}_{\text {IOUT(Q), }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 5	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_Ltd }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-3.4	-1.4 ± 1.2	3.4	\%
Sensitivity Error Including Lifetime Drift	EsENS_LTD	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.2	-1.3 ± 1.1	3.2	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_Ltd }}$	$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$V_{\text {QE_LTD }}$	$V_{\text {IOUT(Q) }}, \mathrm{I}_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

Allegro MicroSystems

ACS37002KMABTR-050B3

ACS37002KMABTR-050B3 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	26.4	50
	0	1	33	40
	1	0	39.6	33.3
	1	1	19.8	66.7

ACS37002KMABTR-050B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, $\mathrm{C}_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-50	-	50	A
		Gain Sel 01	-40	-	40	A
		Gain Sel 10	-33.3	-	33.3	A
		Gain Sel 11	-66.7	-	66.7	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	26.4	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	33	-	mV / A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	39.6	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	19.8	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.65	-	V

TOTAL ERROR (VIOUT(ACTUAL) $-\left(\right.$ Sens $\left._{\text {(IDEAL) }} \times \mathrm{I}_{\mathrm{PR}}+\mathrm{V}_{\text {REF }}\right)$) $/\left(\right.$ Sens $\left._{\text {(IDEAL) }} \times \mathrm{I}_{\mathrm{PR}}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	-0.5 ± 0.6	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1	-0.3 ± 0.5	1	\%
Zero Current Reference Error	$\mathrm{V}_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{A}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-1 ± 3	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-8	± 5	8	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	-1 ± 3	8	mV
QVO Error	$\mathrm{V}_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 5	10	mV

TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]

Total Error Including Lifetime Drift	$\mathrm{E}_{\text {TOT_LTD }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-3.4	-1.4 ± 1.2	3.4	\%
Sensitivity Error Including Lifetime Drift	EsENS_LTD	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-3.2	-1.3 ± 1.1	3.2	\%
Zero Current Reference Error Including Lifetime Drift	$V_{\text {RE_LTD }}$	$\mathrm{V}_{\text {REFactual }}-\mathrm{V}_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-3 ± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	-2 ± 3	10	mV
Offset Error Including Lifetime Drift	$\mathrm{V}_{\text {OE_Ltd }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-10	-2 ± 5	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 4	10	mV
QVO Error Including Lifetime Drift	$\mathrm{V}_{\text {QE_LTD }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-14	-4 ± 6	14	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[^5]Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ACS37002LLAATR-015B5

ACS37002LLAATR-015B5 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	133.3	15
	0	1	166.6	12
	1	0	200	10
	1	1	100	20

ACS37002LLAATR-015B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_{A}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$,
$C_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-15	-	15	A
		Gain Sel 01	-12	-	12	A
		Gain Sel 10	-10	-	10	A
		Gain Sel 11	-20	-	20	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	133.3	-	mV / A
		Gain Sel 01; $I_{\text {PR(min) }}<I_{P}<I_{P R(\text { max })}$	-	166.6	-	mV/A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	200	-	mV/A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	100	-	mV/A
Overcurrent Fault Operating Range	$\mathrm{I}_{\text {OCF-OR }}$	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2.5	-	V
TOTAL ERROR (V $\left.\mathrm{V}_{\text {IOUT(ACTUAL) }}-\left(\operatorname{Sens}_{(\text {IDEAL }} \times I_{\text {PR }}+\mathrm{V}_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(\text {IDEAL }} \times I_{P R}\right) \times 100$ AND TOTAL ERROR COMPONENTS						
Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	± 1.4	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-1.5	± 1.3	1.5	\%
		$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	± 1.2	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 5	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	± 5	8	mV
QVO Error	$V_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 6	10	mV
		$\mathrm{V}_{\text {IOUT(Q), }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[^6]
ACS37002LLAATR-025B5

ACS37002LLAATR-025B5 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)	Max IP (A)
Type	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	80	25
	0	1	66.6	30
	1	0	53.3	37.5
	1	1	40	50

ACS37002LLAATR-025B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $\mathrm{C}_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-25	-	25	A
		Gain Sel 01	-30	-	30	A
		Gain Sel 10	-37.5	-	37.5	A
		Gain Sel 11	-50	-	50	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	80	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	66.6	-	mV / A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	53.3	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	40	-	mV / A
Overcurrent Fault Operating Range	$\mathrm{I}_{\text {OCF-OR }}$	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2.5	-	V
TOTAL ERROR $\left(V_{\text {IOUT(ACTUAL) }}-\left(\operatorname{Sens}_{(\text {IDEAL })} \times I_{\text {PR }}+V_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(I D E A L)} \times I_{\text {PR }}\right) \times 100$ AND TOTAL ERROR COMPONENTS						
Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	± 1.4	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-1.5	± 1.3	1.5	\%
		$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	± 1.2	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 5	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	± 5	8	mV
QVO Error	V_{QE}	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 6	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[^7]
ACS37002LLAATR-015B3

ACS37002LLAATR-015B3 Gain_Sel Pin Performance Key

Parameter (Units)	Gain_Sel_1 (Boolean)	Gain_Sel_0 (Boolean)	Sens (mV/A)
Type	Digital Input	Digital Input	Calculation
Selection Combination	0	0	88
	0	1	110

ACS37002LLAATR-015B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_{A}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, $C_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-15	-	15	A
		Gain Sel 01	-12	-	12	A
		Gain Sel 10	-10	-	10	A
		Gain Sel 11	-20	-	20	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	88	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	110	-	mV/A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	132	-	mV/A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	66	-	mV/A
Overcurrent Fault Operating Range	$\mathrm{l}_{\text {OCF-OR }}$	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(} \mathrm{Q}}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2.5	-	V

TOTAL ERROR $\left(\mathrm{V}_{\text {IOUT(ACTUAL) }}-\left(\operatorname{Sens}_{(\text {IDEAL }} \times \mathrm{I}_{\text {PR }} \times \mathrm{V}_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(\text {IDEAL })} \times \mathrm{I}_{\text {PR }}\right) \times 100$
AND TOTAL ERROR COMPONENTS

Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}$	-1.75	± 1.4	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-1.5	± 1.3	1.5	\%
		$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	± 1.2	1.5	\%
Zero Current Reference Error	$\mathrm{V}_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal, }}, I_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 5	10	mV
Offset Error	$\mathrm{V}_{\text {OE }}$	$V_{\text {IOUT(Q) }}-V_{\text {REF, }} \mathrm{I}_{P}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	± 4	8	mV
		$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }} \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	± 5	8	mV
QVO Error	$V_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 6	10	mV
		$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

[^8]
ACS37002LLAATR-025U3

ACS37002LLAATR-025U3 Gain_Sel Pin Performance Key

ACS37002LLAATR-025U3 Gain_Sel Pin Performance Key
$\left.\begin{array}{\|c\|c\|c\|c\|}\hline \text { Parameter (Units) } & \text { Gain_Sel_1 (Boolean) } & \text { Gain_Sel_0 (Boolean) } & \text { Sens (mV/A) } \\ \hline \text { Type } & \text { Digital Input } & \text { Digital Input } & \text { Calculation }\end{array}\right]$ Max IP (A)
Selection Combination

ACS37002LLAATR-025U3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$,
$\mathrm{C}_{\text {BYPASS }}=0.1 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ${ }^{[1]}$	Max.	Units
NOMINAL PERFORMANCE						
Current Sensing Range	I_{PR}	Gain Sel 00	-25	-	25	A
		Gain Sel 01	-30	-	30	A
		Gain Sel 10	-30	-	30	A
		Gain Sel 11	-50	-	50	A
Sensitivity	Sens	Gain Sel 00; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	105.6	-	mV / A
		Gain Sel 01; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	88	-	mV / A
		Gain Sel 10; $\mathrm{I}_{\mathrm{PR}(\text { min }}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	70.4	-	mV / A
		Gain Sel 11; $\mathrm{I}_{\mathrm{PR}(\text { min })}<\mathrm{I}_{\mathrm{P}}<\mathrm{I}_{\mathrm{PR}(\text { max })}$	-	52.8	-	mV / A
Overcurrent Fault Operating Range	IOCF-OR	Typ. = factory-programmed default, FS = Full-Scale	50	100	200	\%FS
Zero Current Output Voltage	$\mathrm{V}_{\text {IOUT(Q) }}$	Bidirectional; $\mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2.5	-	V
TOTAL ERROR $\left(\mathrm{V}_{\text {IOUT(ACTUAL) }}-\left(\operatorname{Sens}_{(\text {IDEAL })} \times I_{\text {PR }}+\mathrm{V}_{\text {REF }}\right)\right) /\left(\operatorname{Sens}_{(\text {IDEAL) }} \times I_{\text {PR }}\right) \times 100$ AND TOTAL ERROR COMPONENTS						
Total Error	$\mathrm{E}_{\text {TOT }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\max)}$	-1.75	± 1.4	1.75	\%
Sensitivity Error	$\mathrm{E}_{\text {SENS }}$	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-1.5	± 1.3	1.5	\%
		$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}(\text { max })}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-1.5	± 1.2	1.5	\%
Zero Current Reference Error	$V_{\text {RE }}$	$V_{\text {REFactual }}-V_{\text {REFideal, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 4	10	mV
		$V_{\text {REFactual }}-V_{\text {REFideal }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 5	10	mV
Offset Error	V_{OE}	$\mathrm{V}_{\text {IOUT(Q) }}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-8	± 4	8	mV
		$\mathrm{V}_{\text {IOUT(} \mathrm{Q})}-\mathrm{V}_{\text {REF, }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-8	± 5	8	mV
QVO Error	$V_{\text {QE }}$	$\mathrm{V}_{\text {IOUT(Q) }}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-10	± 6	10	mV
		$\mathrm{V}_{\text {IOUT }(\mathrm{Q})}, \mathrm{I}_{\mathrm{P}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	-10	± 7	10	mV

${ }^{[1]}$ Typicals are based on worse case mean ± 3 sigma values during production or production and qualification.

FUNCTIONAL DESCRIPTION

Power-On Reset Operation

The descriptions in this section assume: temperature $=25^{\circ} \mathrm{C}$, with the labeled test conditions. The provided graphs in this section show $\mathrm{V}_{\text {IOUT }}$ moving with V_{CC}. The voltage of $\mathrm{V}_{\text {IOUT }}$ during a high-impedance state will be most consistent with a known load ($\mathrm{R}_{\text {LOAD }}, \mathrm{C}_{\text {LOAD }}$).

POWER-ON

As V_{CC} ramps up, the ACS 37002 's $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\text {REF }}$ pins are high impedance until V_{CC} reaches and passes $\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}[2]$ (or $\mathrm{V}_{\mathrm{POR}(\mathrm{H})}$ [1] if UVD is disabled). Once V_{CC} passes [2], the device takes some time without V_{CC} dropping below $\mathrm{V}_{\mathrm{POR}(\mathrm{L})}$ [8] before the device enters normal operation.

POWER-OFF

As V_{CC} drops below $\mathrm{V}_{\mathrm{POR}(\mathrm{L})}[8]$, the outputs will enter a highimpedance state. If UVD is enabled, before the device powers off, it will force $\mathrm{V}_{\text {IOUT }}$ to GND if $\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{UVD}(\mathrm{L})}$ [6] until $\mathrm{V}_{\mathrm{POR}(\mathrm{L})}$ [8] (seen in Figure 4 and Figure 6) is reached, at which point $V_{\text {IOUT }}$ and $V_{\text {REF }}$ will go high Z. If UVD is disabled, then $V_{\text {REF }}$ and $V_{\text {IOUT }}$ will continue to report until V_{CC} is less than $\mathrm{V}_{\mathrm{POR}(\mathrm{L})}[8]$ (seen in Figure 7), at which point they will go high Z .

Note: Since the device is entering a high Z state, and not driving the output, the time it takes the output to reach a steady state will depend on the external circuitry used.

Figure 5: $\mathrm{t}_{\text {POD }}$ behavior UVD disabled, $\mathrm{RL}=$ Pull-Up POWER-ON RESET (POR)
If V_{CC} falls below $\mathrm{V}_{\mathrm{POR(L)}}$ [8] while in operation, the output will re-enter a high-impedance state. After V_{CC} recovers and exceeds $\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}$ [2], the output will begin reporting again after the delay of $\mathrm{t}_{\text {POD }}$.

POWER-ON DELAY ($\mathrm{T}_{\text {POD }}$)

When the supply is ramped to $\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}$ (seen in Figure 5 as [2]), the device will require a finite time to power its internal components before the outputs are released from high Z and can respond to an input magnetic field. Power-On Time, $t_{P O D}$, is defined as the time it takes for the output voltage to settle within $\pm 10 \%$ of its steady-state value under an applied magnetic field, which can be seen the time from [2] to [A]. After this delay, the output will quickly approach $\mathrm{V}_{\text {IOUT(IP) }}=\operatorname{Sens} \times \mathrm{I}_{\mathrm{P}}+\mathrm{V}_{\text {REF }}$.

Figure 4: Power States Thresholds with $\mathrm{V}_{\text {IOUT }}$ Behavior for a 5 V Device, $\mathrm{R}_{\mathrm{L}}=$ Pull-Down, UVD Enabled

Overvoltage and Undervoltage Detection (OVD/UVD)

To ensure that the device's output is reporting accurately, the device contains an overvoltage and an undervoltage detection flag. This flag on $\mathrm{V}_{\text {IOUT }}$ can be used to alert the system when the supply voltage for the device is outside of the operational range. UVD is only active on 5 V devices.

UNDERVOLTAGE DETECTION VOLTAGE THRESHOLDS ($\left.\mathbf{V}_{\mathrm{UVD}(\mathrm{H} / \mathrm{L})}\right)$

The 5 V ACS37002 is factory-programmed with UVD enabled. It is important to note that when powering up the device for the first time after a POR event, $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\text {REF }}$ will remain high Z until V_{CC} is raised above $\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}$ (seen in Figure 6 as [2]), at which point the $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\text {REF }}$ outputs will begin to normal operation.

If UVD is disabled or it is a 3.3 V device, $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\text {REF }}$ will begin report after V_{CC} raises above $\mathrm{V}_{\mathrm{POR}(\mathrm{H})}$ (seen in Figure 7 as [1]) under the same conditions.

If V_{CC} drops below $\mathrm{V}_{\mathrm{UVD}(\mathrm{L})}$ [6] after normal operation, $\mathrm{V}_{\text {IOUT }}$ will pull to GND regardless of $\mathrm{R}_{\text {LOAD }}$ configuration. The $\mathrm{V}_{\text {IOUT }}$ will remain at GND until V_{CC} raises above $\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}$ [7] or V_{CC} falls below $\mathrm{V}_{\mathrm{POR}(\mathrm{L})}$ [8]. If V_{CC} rises above $\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}$ [7] after a UVD, event, the $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\text {REF }}$ outputs will resume operation. If V_{CC} drops below $\mathrm{V}_{\mathrm{POR(L)}}$ [8], the device will enter a POR event and reset; $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\text {REF }}$ will switch to high Z if this occurs.

OVERVOLTAGE DETECTION VOLTAGE THRESHOLDS ($\left.\mathrm{V}_{\mathrm{OVD}(\mathrm{H} / \mathrm{L})}\right)$

When V_{CC} raises above $\mathrm{V}_{\mathrm{OVD}(\mathrm{H})}$ (seen in Figure 6 as [4]), the

Figure 6: Power States Thresholds with $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\mathrm{REF}}$ Behavior, 5 V Device, $\mathrm{R}_{\mathrm{L}}=$ Pull-Up, UVD Enabled

Figure 7: Power States Thresholds with $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\mathrm{REF}}$ Behavior, 3.3 V Device, $\mathrm{R}_{\mathrm{L}}=$ Pull-Up, UVD Disabled
output of the $V_{\text {REF }}$ and $V_{\text {IOUT }}$ pin will go high $Z, V_{\text {REF }}$ be pulled to GND, and $\mathrm{V}_{\text {IOUT }}$ will be pulled to either VCC or GND, depending if $\mathrm{R}_{\text {Load }}$ is in a pull-up or pull-down configuration.

OVERVOLTAGE/UNDERVOLTAGE DETECTION HYSTERESIS ($\mathrm{V}_{\text {OVD(HYS) }}$, $\mathrm{V}_{\text {UVD(HYS) }}$)

There is hysteresis between enable and disable thresholds to reducing nuisance flagging and clears. There is approximately 1 V and 0.4 V of hysteresis for Overvoltage and Undervoltage respectively. These can be seen represented in Figure 6 between the relevant thresholds.

OVERVOLTAGE AND UNDERVOLTAGE ENABLE AND DISABLE TIME ($\left.\mathrm{T}_{\mathrm{VVD}(E / D)}, \mathrm{T}_{\mathrm{UVD}(E / D)}\right)$

The enable time for $\mathrm{OVD}, \mathrm{t}_{\mathrm{OVD}(\mathrm{E})}$, is the time from $\mathrm{V}_{\mathrm{OVD}(\mathrm{H})}[4]$ to OVD flag [B] in Figure 8. The UVD enable time, $\mathrm{t}_{\mathrm{UVD}(\mathrm{E})}$, is the time from $\mathrm{V}_{\mathrm{UVD}(\mathrm{L})}[6]$ to the UVD flag [D], also in Figure 8. The enable flag for both OVD and UVD has a counter to reduce transients faster than $64 \mu \mathrm{~s}$ from triggering nuisance flags.

If V_{CC} ramps from $>\mathrm{V}_{\mathrm{UVD(L)}}$ [6] to $<\mathrm{V}_{\mathrm{POR(L)}}$ [8] (both seen in Figure 8) faster than $\mathrm{t}_{\mathrm{UVD}(\mathrm{E})}$, then the device will not have time to report a UVD event before power off occurs.
The disable time for $\mathrm{OVD}, \mathrm{t}_{\mathrm{OVD}(\mathrm{D})}$, is the time from $\mathrm{V}_{\mathrm{OVD}(\mathrm{L})}$ [5] to the OVD clear to normal operation [C] in Figure 8. The UVD disable time, $\mathrm{t}_{\mathrm{UVD}(\mathrm{D})}$, is the time from $\mathrm{V}_{\mathrm{UVD}(\mathrm{H})}[7]$ to the point that the UVD flag clears and $\mathrm{V}_{\text {IOUT }}$ returns to nominal operation [E], also seen in Figure 8. The disable time does not have a counter for either UVD or UVD to release the output and resume reporting.

SUPPLY ZENER CLAMP VOLTAGES

If the voltage applied to the device continues to increase past overvoltage detection, there is a point when the Zener diodes will turn on. These internal diodes are in place to protect the device from short high voltage or ESD events and should NOT be used as a feature to reduce the voltage on a line. Continued exposure to voltages higher than normal operating voltage, V_{CC}, can weaken or damage the Zener diodes, which will potentially damage the part.

Figure 8: $\mathrm{t}_{\text {POD }}, \mathrm{t}_{\mathrm{OVD}(\mathrm{E} / \mathrm{D})}$, and $\mathrm{t}_{\mathrm{UVD}(\mathrm{E} / \mathrm{D})}$ with $\mathrm{R}_{\mathrm{L}}=$ Pull-Up

Absolute Maximum Ratings

These are the maximum application or environmental conditions that the device can be subjected before damage may occur.

FORWARD AND REVERSE SUPPLY VOLTAGE

These are the largest voltage magnitudes that can be supplied to V_{CC} from GND during programing or transient switching. This voltage should not be used as a DC voltage bias for an extended time.

FORWARD AND REVERSE OUTPUT VOLTAGE

The Forward Output Voltage or $\mathrm{V}_{\text {FIout }}$ voltage can be no greater than $\mathrm{V}_{\mathrm{CC}}+0.5$ up to 6.5 V . This is the greatest voltage that the output can be biased with from GND during programming or transient switching. The Reverse Output Voltage or $\mathrm{V}_{\text {RIOUT }}$ should not drop below -0.5 V during programming or transient switching. These voltages should not be used as a DC voltage bias for an extended time.

FORWARD AND REVERSE REFERENCE/FAULT VOLTAGE

The Forward Reference/Fault Voltage or $\mathrm{V}_{\mathrm{F}-\mathrm{RF}}$ voltage can be no greater than $\mathrm{V}_{\mathrm{CC}}+0.5$ up to 6.5 V . This is the greatest voltage that the $\mathrm{V}_{\mathrm{REF}}$ and $\mathrm{V}_{\mathrm{OCF}}$ can be biased with from GND during
programming or transient switching. The Reverse Output Voltage or $\mathrm{V}_{\mathrm{R}-\mathrm{RF}}$ should not drop below -0.5 V during programming or transient switching. These voltages should not be used as a DC voltage bias for an extended time.

OUTPUT SOURCE AND SINK CURRENT

This is the maximum current that $\mathrm{V}_{\text {IOUT }}$ can passively sink or source before damage may occur.

AMBIENT TEMPERATURE (T_{A})

This is the ambient temperature of the device. The Operating Ambient Temperature Range is the ambient temperature range that the Common Electricals and Common Performance Characteristics limits are valid. The Optimized Ambient Temperature Range is the ambient temperature range that the device-specific performance characteristics limits are valid. ACS37002L devices have optimized performance in the $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ("L" temperature) range. ACS37002K devices have optimized performance in the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (" K " temperature) range. The $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ("K" temperature) range devices have Device Specific Performance optimized within the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range but will still operate in the $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ("L" temperature) range.

DEFINITIONS OF OPERATING AND PERFORMANCE CHARACTERISTICS

Zero Current Voltage Output ($\mathbf{V}_{\text {IOUT(Q) }}$, $\mathbf{Q V O}$)

Zero Current Voltage Output or $\mathrm{V}_{\text {IOUT(Q) }}$ (also called QVO) is defined as the voltage on the output, $\mathrm{V}_{\text {IOUT }}$ when zero amps are applied through I_{P}.

QVO Temperature Drift (V_{QE})

QVO Temperature Drift, or V_{QE}, is defined as the drift of QVO from room to hot or room to cold $\left(25^{\circ} \mathrm{C}\right.$ to $125 / 150^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ respectively). To improve over temperature performance the temperature drift is compensated with Allegro's factory trim to remain within the limits across temperature.

Reference Voltage ($\mathbf{V}_{\text {REF }}$)

There is a Voltage Reference Output, ($\mathrm{V}_{\mathrm{REF}}$) on the ACS37002. This output reports the zero-current voltage for the output channel $\mathrm{V}_{\text {IOUT }}$ allowing for differential measurement and a device referred supply for the VOC pin.

Reference VoItage Temperature Drift (\mathbf{V}_{RE})

Reference Voltage Temperature Drift, or V_{RE}, is defined as the drift of $\mathrm{V}_{\text {REF }}$ from room to hot or room to cold $\left(25^{\circ} \mathrm{C}\right.$ to $125 / 150^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ respectively).

Offset Voltage (\mathbf{V}_{OE})

Offset Voltage, or V_{OE}, is defined as the difference between QVO and $V_{\text {REF }}$ (see Figure 9). $V_{\text {OE }}$ includes the drift of $Q V O$ minus $\mathrm{V}_{\mathrm{REF}}$ from room to hot or room to cold $\left(25^{\circ} \mathrm{C}\right.$ to $125 / 150^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ respectively).

Figure 9: Offset ($\mathrm{V}_{\text {OFF }}$) Between $\mathrm{V}_{\text {IOUT }}$ and $\mathrm{V}_{\text {REF }}$

Output Saturation Voltage ($\mathbf{V}_{\text {SAT(HIGH/LOW) }}$)

Output Saturation Voltage, or $\mathrm{V}_{\mathrm{SAT}}$, is defined as the voltage that the $\mathrm{V}_{\text {IOUT }}$ does not pass as a result to an increasing magnitude of current. $\mathrm{V}_{\mathrm{SAT}(\mathrm{HIGH})}$ is the highest voltage the output can drive to while, $\mathrm{V}_{\text {SAT(LOW) }}$ is the lowest. This can be seen in Figure 10 . Note that changing the sensitivity does not change the $\mathrm{V}_{\mathrm{SAT}}$ points.

OUTPUT VOLTAGE OPERATING RANGE ($\mathrm{V}_{\text {OOR }}$)

The Output Voltage Operating Range, or $\mathrm{V}_{\mathrm{OOR}}$, is the functional range for linear performance of $\mathrm{V}_{\text {IOUT }}$ and its related datasheet parameters. This can be seen in Figure 10. The $\mathrm{V}_{\text {OOR }}$ is the output region that the performance accuracy parameters are valid. It is possible for the output to report beyond these voltages until $\mathrm{V}_{\mathrm{SAT}}$, but certain parameters cannot be guaranteed. The output performance is demonstrated in Figure 10 through and beyond the $\mathrm{V}_{\text {OOR }}$.

Voltage Output Operating Range for V_{CC} and Output Modes, $\mathrm{V}_{\text {OOR(Vcc, Mode) }}$		
$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	Bidrectional	Unidirectional
3.3	± 1.32	+2.64
5	± 2	+4

Figure 10: $\mathrm{V}_{\mathrm{OOR}}, \mathrm{V}_{\mathrm{SAT}}$ and SENS with Full Scale

Sensitivity (Sens)

Sensitivity, or Sens, is the ratio of the output swing versus the applied current through the primary conductor, I_{P}. This current causes a voltage deviation away from QVO on the $\mathrm{V}_{\text {IOUT }}$ output until $\mathrm{V}_{\mathrm{SAT}}$. The magnitude and direction of the output voltage swing is proportional to the magnitude and direction of the applied current. This proportional relationship between output and input is Sensitivity and is defined as:

$$
\text { Sens }=\frac{V_{\text {OUT(II) }}-V_{\text {OUT(I2) }}}{I_{1}-I_{2}}
$$

where I_{1} and I_{2} are two different currents, and where $\mathrm{V}_{\text {IOUT(I1) }}$ and $\mathrm{V}_{\text {IOUT(I2) }}$ are the voltages of the device at the applied currents. $\mathrm{V}_{\text {IOUT }}, \mathrm{I}_{1}$, or I_{2} can be QVO with zero current.

Sensitivity Error ($\mathrm{E}_{\text {sens }}$)

Sensitivity Temperature Drift, or $\mathrm{E}_{\text {sens }}$, is the drift of Sens from room to hot or room to cold $\left(25^{\circ} \mathrm{C}\right.$ to $125^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ respectively). No trimming/programming is needed as temperature drift is compensated with Allegro's factory trim.

Figure 11: Output Accuracy Pocket for Room and Across Temperature

Gain Selection Pins

The ACS37002 features external gain selection pins that configures the device sensitivity. The gain select logic is latched based on the pin voltage at startup. Either pin may be shorted directly to VCC or GND, which is logic 1 or 0 respectively. Both pins include an internal $1 \mathrm{M} \Omega$ pull-down resistor to GND. Externally floating pins will be interpreted as logic 0 ; if both pins are floating, the device will be in the 00 configuration. Specific gain select performance can be found in the selection Performance Characteristics table. To change the gain of the device, refer to Figure 21 in the Application and Theory section.

Full Scale (FS)

Full Scale, or FS, is a method to relate an input and/or output to the max input and/or output of the device. For example, 50% FS of a 10 A sensor is 5 A , or 50% of its maximum input current. The 50% input of 5 A will cause the output to move 50%, or $50 \% \mathrm{FS}$. FS is used to interchangeably refer to input and output deviations when discussing input steps, fault trip thresholds and relating input to output performance. $\mathrm{FS}_{\text {INPUT }}$ is the input bias that results in $\mathrm{FS}_{\text {OUTPUT }}$ and these two are directly related by the device actual sensitivity. Both FS can be seen in Figure 10, labeled as positive or negative FS input and FS output. The equation for input referred FS for a 5 V bidirectional device is:

$$
\mathrm{FS}=\mathrm{V}_{\mathrm{OOR}(5 \mathrm{~V}, \mathrm{Bi})} / \text { Sens }_{\text {Actual }}= \pm 2 \mathrm{~V} / \text { Sens }_{\text {Actual }}
$$

Note: that a percentage change in $\mathrm{FS}_{\text {INPUT }}$ is equivalent to a resultant percentage change of $\mathrm{FS}_{\text {OUTPUT }}$ and visa versa.

Nonlinearity ($\mathrm{E}_{\text {LIN }}$)

As the amount of field applied to the part changes, the sensitivity of the device can also change slightly. This is referred to as linearity error or $\mathrm{E}_{\mathrm{LIN}}$ (see Figure 12). Consider two currents, $\mathrm{I}_{1}(1 / 2 \mathrm{FS})$ and $\mathrm{I}_{2}(\mathrm{FS})$. Ideally, the sensitivity of the device is the same for both fields. Linearity Error is calculated as the percent change in sensitivity from one field to another. Error is calculated separately for positive $\left(\mathrm{E}_{\mathrm{LIN}(+)}\right)$ and negative $\left(\mathrm{E}_{\mathrm{LIN}(-)}\right)$ currents, and the percent errors are defined as:

$$
E_{L I N(\pm)}=\left(1-\frac{\operatorname{Sens}_{I 2 \pm}}{\operatorname{Sens}_{I \pm \pm}}\right) * 100 \%
$$

where:

$$
\text { Sens }_{\mathrm{Ix}+}=\left(\mathrm{V}_{\text {IOUTIx }+}-\mathrm{V}_{\text {REF }}\right) / \mathrm{I}_{\mathrm{x}+}
$$

and

$$
\operatorname{Sens}_{\text {Ix- }}=\left(\mathrm{V}_{\text {IOUTIx- }}-\mathrm{V}_{\mathrm{REF}}\right) / \mathrm{I}_{\mathrm{x}-}
$$

Ix are positive and negative currents through I_{p}, such that

$$
\left|\mathrm{I}_{+2}\right|=2 \times\left|\mathrm{I}_{+1}\right| \text { and }\left|\mathrm{I}_{-2}\right|=2 \times\left|\mathrm{I}_{-1}\right| \cdot \mathrm{E}_{\mathrm{LIN}}=\max \left(\mathrm{E}_{\mathrm{LIN}(+)}, \mathrm{E}_{\mathrm{LIN}(-)}\right)
$$

Total Output Error ($\mathrm{E}_{\text {TOT }}$)

The Total Output Error is the current measurement error from the sensor IC as a percentage of the actual applied current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current applied to the device, or simplified to:

$$
E_{T O T(\pm)}=\left(1-\frac{V_{\text {IOUT_Actual }(\pm I)}}{V_{\text {IOUT_Ideal }(\pm I)}}\right) * 100 \%
$$

where

$$
\mathrm{V}_{\text {IOUT_Actual }(\pm \pm)}= \pm \mathrm{I} \times \text { Sens }_{\text {Actual }}+\mathrm{QVO}_{\text {Actual }}
$$

and

$$
\mathrm{V}_{\text {IOUT_Ideal }(I \pm)}= \pm \mathrm{I} \times \text { Sens }_{\text {Ideal }}+\mathrm{V}_{\text {REF_Actual }}
$$

Total Output Error incorporates all sources of error and is a function of current. At relatively high currents, Total Output Error will be mostly due to sensitivity error, and at relatively low inputs, Total Output Error will be mostly due to Offset Voltage $\left(\mathrm{V}_{\mathrm{OE}}\right)$. At $\mathrm{I}=0 \mathrm{~A}$, Total Output Error approaches infinity due to the offset. An example of total error at FS can be seen in Figure 12.
Note: Total Output Error goes to infinity as the amount of applied field approaches 0 A .

Figure 12: Accuracy Error

Power Supply Offset Error (V_{PS})

Power Supply Offset Error or $\mathrm{V}_{\text {PS }}$ is defined at the offset error in mV between V_{CC} and $\mathrm{V}_{\mathrm{CC}} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$. For a 5 V device, this is 5 to 4.5 V and 5 to 5.5 V . For a 3.3 V device, this is 3.3 to 3 V and 3.3 to 3.6 V .

Offset Power Supply Rejection Ratio (PSRRO)

The Offset Power Supply Rejection Ratio or PSRRO is defined as $20 \times \log$ of the ratio of the change of QVO in volts over a $\pm 100 \mathrm{mV}$ variable $\mathrm{AC} \mathrm{V}_{\mathrm{CC}}$ centered at 5 V reported as dB in a specified frequency range. This is an $A C$ version of the $V_{P S}$ parameter. The equation is shown below:

$$
P S R R_{O}=20 \log \left(\frac{\Delta Q V O}{\Delta V_{C C}}\right)
$$

Power Supply Sensitivity Error (E_{PS})

Power Supply Sensitivity Error, or E_{PS}, is defined as the percent sensitivity error measured between V_{CC} and $\mathrm{V}_{\mathrm{CC}} \pm 10 \%$. For a 5 V device, this is 5 to 4.5 V and 5 to 5.5 V . For a 3.3 V device, this is 3.3 to 3 V and 3.3 to 3.6 V .

Sensitivity Power Supply Rejection Ratio (PSRRS)

The Sensitivity Power Supply Rejection Ratio or PSRRS is defined as $20 \times \log$ of the ratio of the $\%$ change the sensitivity over the $\%$ change in $\mathrm{V}_{\mathrm{CC}}\left(\pm 100 \mathrm{mV}\right.$ variable $\mathrm{AC} \mathrm{V}_{\mathrm{CC}}$ centered at 5 V) reported as dB in a specified frequency range. This is the AC version of the E_{PS} parameter. The equation is shown below:

$$
P S R R_{S}=20 \log \left(\frac{\Delta \% S E N S}{\Delta \% V_{C C}}\right)
$$

FAULT BEHAVIOR

Overcurrent Fault (OCF)

As the output swings, the Overcurrent Fault pin will trigger with an active low flag if the sensed current exceeds its comparator threshold. This is internally compared with either the factoryprogrammed thresholds or via the VOC voltage when $\mathrm{V}_{\text {VOC }}>$ 0.1 V . This flag trips symmetrically for the positive and negative OCF operating point.

The implementation for the OCF circuitry is accurate over temperature and does not require further temperature compensation as it is dependent on the Sens and $V_{\text {OFF }}$ parameters that are factory-trimmed flat over temperature.

OVERCURRENT FAULT OPERATING RANGE/POINT (locF-or, locF-OP)

Overcurrent Fault Operating Range is the functional range that the OCF thresholds can be set in terms of percentage of full-scale output swing. The Overcurrent Fault Operating Point is the specific point at which the OCF trigger will occur, and is set by either $\mathrm{V}_{\text {VOC }}$ or the factory default setting. The $\mathrm{I}_{\mathrm{OCF} \text {-OP }}$ can be seen in Figure 13 as [9] along with the FAULT pin functionality.

OVERCURRENT FAULT HYSTERESIS (locF-HYST)
Overcurrent Fault Hysteresis or $\mathrm{I}_{\text {OCF-HYST }}$ is defined as the magnitude of percent FS that must drop before a fault assertion will be cleared. This can be seen as the separation between the voltages [9] to [10] in Figure 13. Note the MASK and HOLD functionality are independent of each other. The ACS37002 comes standard with an $\mathrm{OCF}_{\text {HYS }}$ of 120 mV (on the output) or $6 \% \mathrm{FS}$ for a 5 V device and $9 \% \mathrm{FS}$ for a 3.3 V device.

Figure 13: Fault Thresholds and OCF Pin Functionality

VOLTAGE OVERCURRENT PIN (VOC)

The fault trip points can be set using the VOC pin as the direct analog input for the fault trip point. The VOC pin voltage can be set using resistor dividers from $\mathrm{V}_{\text {REF }}$ on bidirectional devices. The fault performance is valid when $V_{\text {VOC }}$ is within the VOC Operating Voltage Range or $<0.1 \mathrm{~V}$. The device will respond to voltage outside of the defined valid performance region with varied results. For a 5 V bidirectional device, setting the VOC pin to 0.5 V selects the minimum trip point, $\mathrm{I}_{\mathrm{FAULT}(\mathrm{min})}$, and setting the pin to 2 V selects the maximum trip point, $\mathrm{I}_{\mathrm{FAULT}(\max)}$ as defined by selection performance tables. All voltages between 0.5 to 2 V for 5 V option and 0.33 to 1.321 V for 3.3 V option can linearly select a trip point between the minimum and maximum levels, as shown in Figure 14. When $\mathrm{V}_{\mathrm{OC}}<$ 0.1 V , the internal EEPROM fault level will be used.

The resulting equation for the fault is:

$$
\begin{aligned}
O C F_{\% \mathrm{FS}}[\%] & =\frac{V_{\mathrm{OC}\left(\mathrm{~V}_{\mathrm{CC}}\right)}[\mathrm{V}]}{V_{\mathrm{OC}(\mathrm{VCC)} 100 \%}[\mathrm{V}]} \times 100[\%] \\
I_{\mathrm{OCF}}[\mathrm{~A}] & =O C F_{\% \mathrm{FS}}[\%] \times \mathrm{I}_{\mathrm{PR}}[\mathrm{~A}]
\end{aligned}
$$

Table 1: $\mathrm{V}_{\mathrm{OC}(\mathrm{Vcc})}$ thresholds and corresponding percentage of the Full-Scale Output for Bidirectional and Unidirectional operational modes

$\mathbf{V}_{\mathbf{O C}(3.3 \mathrm{~V})}(\mathbf{V})$	$\mathbf{V}_{\mathbf{O C}(5 \mathrm{~V})}(\mathbf{V})$	Fault Operation Point \%FS	
		Bidirectional	Unidirectional
<0.1		100% (factory default)	50% (factory default)
0.330	0.5	50%	25%
0.466	0.75	75%	37.5%
0.661	1	100%	50%
0.826	1.25	125%	62.5%
0.991	1.5	150%	75%
1.156	1.75	175%	85%
1.321	2	200%	100%

Figure 14: VOC Functional Range

OVERCURRENT FAULT ERROR (E

Fault Error or $\mathrm{E}_{\mathrm{OCF}}$ is the error between the $\mathrm{I}_{\mathrm{OCF}-\mathrm{OP}(\text { actual })}$ and I

OVERCURRENT FAULT RESPONSE TIME ($\mathrm{t}_{\text {OCF }}$)

Overcurrent Response Time or $\mathrm{t}_{\mathrm{OCF}}$ is defined as the time from the input reaches the operating point [9] (seen in Figure 15) until the OCF pin falls below $\mathrm{V}_{\text {FAult-on }}[\mathrm{G}]$. If the OCF Mask is disabled, then $\mathrm{t}_{\text {OCF }}$ is equal to $\mathrm{t}_{\mathrm{OCF-R}}$ seen as the time from [9] until [F].

OVERCURRENT FAULT REACTION TIME (tocF-R)

Overcurrent Reaction Time or $\mathrm{t}_{\text {OCF-R }}$ is defined as the time from the current input rising above $\mathrm{I}_{\mathrm{OCF}-\mathrm{OP}}$ at point [9] in Figure 15 until the OCF pin reaches $\mathrm{V}_{\text {OCF-ON }}$ at point [F] with the OCF mask disable. This is the time required for the device to recognize and clear the fault, seen as the time between [10] until [I].

OVERCURRENT FAULT MASK TIME (tocf-MASK)

Overcurrent Fault Mask Time or tocf-MASK is defined as the additional amount of time the OCF must be present beyond the $t_{\text {OCF-R }}$ time (seen in Figure 15 [F] until [G]). This is to reduce nuisance tripping of the FAULT pin. If an OCF occurs, but does not persist beyond $\mathrm{t}_{\text {OCF-R }}+\mathrm{t}_{\text {OCF-MASK }}$, it is not reported by the device (seen in Figure 16). This prevents short transient spikes from causing erroneous OCF flagging. Factory default setting is $\mathrm{t}_{\text {OCF-MASK }}=0 \mu \mathrm{~s}$.

Figure 15: General Fault Timing. Note: the MASK and HOLD functionality are independent of each other

OVERCURRENT FAULT HOLD TIME ($\mathrm{t}_{\mathrm{OCF} \text {-hold }}$)

Overcurrent Fault Hold Time or $\mathrm{t}_{\mathrm{OCF}-\mathrm{HOLD}}$ is defined as the minimum time OCF flag will be asserted after a sufficient OCF event. After the hold time has been reached, the OCF will release if the OCF condition has ended (seen in Figure 15 [G] until [J]) or persist if the OCF condition is still present (seen in Figure 17 [G] until [J]). Factory default is 0 ms .

OVERCURRENT FAULT PERSIST

The ACS37002 has a fault persist option that will maintain the OCF flag if a flag occurred until a POR event.

OCF DISABLE

The ACS37002 has the ability to disable overcurrent fault functionality; when this is disabled, the OCF pin will remain in high Z.

Figure 16: Fault Condition Clearing Before Mask Time Is Reached

Figure 17: Fault Hold with Clear Fault After Hold Time

DYNAMIC RESPONSE PARAMETERS

The descriptions in this section assume: temperature $=25^{\circ} \mathrm{C}$, and output loads are within limits on Common Electrical table. The step applied is a input step that corresponds to 1 V deviation on the output, unless otherwise stated.

Propagation Time (t_{pd})

The time interval between a) when the sensed current reaches 10% of its stable value, and b) when the sensor output reaches 10% of its stable value for a step input. See Figure 18.

Rise Time (t_{R})

The time interval between a) when the sensor reaches 10% of its stable value, and b) when it reaches 90% of the stable value for a step input. See Figure 18.

Response Time ($\mathrm{t}_{\text {RESPONSE }}$)

The time interval between a) when the sensed current reaches 90% of its stable value, and b) when the sensor output reaches 90% of its stable value. See Figure 18.

Temperature Compensation

To help compensate for the effects temperature has on performance, the ACS37002 has an integrated internal temperature sensor. This sensor and compensation algorithms help to standardize device performance over the full range of optimized temperatures. This allows for room temperature system calibration and validation of end-of-line modules.

Temperature Compensation Update Rate

There is an 8 ms update time that is required to maintain a valid temperature compensated output; that is, temperature compensations are calculated and applied every 8 ms .

Figure 18: Dynamic Response Parameters

APPLICATION AND THEORY

Application Circuits

Figure 19: Applications Circuits for GAIN_SEL, VOC, and FAULT pin
These configurations are simplified to the network required for functionality.
Bypass and load capacitors are recommend for best performance.

Theory and Functionality - VOC and OCF

Figure 20: OCF Signal Path Simplified and Detailed Blocks of Functionality

VOC DRIVEN BY NON-INVERTING BUFFERED VREF

If the VOC pin is being driven by a non-inverted buffered $\mathrm{V}_{\text {REF }}$, it is important to consider that any error from the $V_{\text {REF }}$ pin will be gained as well. For instance, if $\mathrm{V}_{\text {REF }}$ error is +10 mV and the gain $=4$ for the non-inverting operational amplifier, then the VOC pin will be 40 mV from the expected target. For unidirectional devices, OCF would be subjected to an additional 4% error due to the error propagation from $V_{\text {REF }}$ through the gain stage.

POWER SUPPLY DECOUPLING CAPACITOR AND OUTPUT CAPACITIVE LOADS
The higher the capacitive load on the outputs ($\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {IOUT }}$), the larger the decoupling capacitor should be on the power supply $\left(\mathrm{V}_{\mathrm{CC}}\right)$ to maintain performance.

$\mathrm{C}_{\text {LOAD }}$	C $_{\text {BYPASS }}$
0 nF	$>100 \mathrm{nF}$
1 nF	$>100 \mathrm{nF}$
3 nF	$>1 \mu \mathrm{~F}$
6 nF	$>10 \mu \mathrm{~F}$

Dynamically Change Gain in a System

The ACS37002 has GAIN_SEL pins that are used to change the gain of the device on startup. If a more dynamic gain is desired, then reduce V_{CC} below $\mathrm{V}_{\mathrm{POR}(\mathrm{L})}$ and restart the device by returning V_{CC} to the nominal voltage with the new desired GAIN_SEL configuration. The GAIN_SEL pin voltage must greater than the
desired configuration voltage $\left(\mathrm{V}_{\mathrm{H}(\mathrm{SEL})}\right.$ or $\left.\mathrm{V}_{\mathrm{L}(\mathrm{SEL})}\right)$ at or before $\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{POR}(\mathrm{H})}$ in order to successfully change the device gain. The GAIN_SEL pin voltage is latched at startup, and any changes to the pin voltages after the devices $\mathrm{V}_{\text {IOUT }}$ comes out of high Z will not affect gain. The cycle time to complete this operation is up to $2 \times \mathrm{t}_{\text {POD }}$.

Figure 21: GAIN_SEL Dynamic Gain Changing Timing Diagram

THERMAL PERFORMANCE

Thermal Rise vs. Primary Current

Self-heating due to the flow of current should be considered during the design of any current sensing system. The sensor, printed circuit board (PCB), and contacts to the PCB will generate heat as current moves through the system.
The thermal response is highly dependent on PCB layout, copper thickness, cooling techniques, and the profile of the injected current. The current profile includes peak current, current "on-time", and duty cycle. While the data presented in this section was collected with direct current (DC), these numbers may be used to approximate thermal response for both AC signals and current pulses.

The plot in Figure 22 shows the measured rise in steady-state die temperature of the ACS37002 versus continuous current at an ambient temperature, T_{A}, of $25^{\circ} \mathrm{C}$. The thermal offset curves may be directly applied to other values of T_{A}. Conversely, Figure 23 shows the maximum continuous current at a given T_{A}. Surges beyond the maximum current listed in Figure 24 are allowed given the maximum junction temperature, $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}\left(165^{\circ} \mathrm{C}\right)$, is not exceeded.

Figure 22: Self heating in the MA and LA package due to current flow

Figure 23: Maximum Continuous Current at a Given T_{A}

The thermal capacity of the ACS37002 should be verified by the end user in the application's specific conditions. The maximum junction temperature, $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}\left(165^{\circ} \mathrm{C}\right)$, should not be exceeded. Further information on this application testing is available in the DC and Transient Current Capability application note on the Allegro website.

Evaluation Board Layout

Thermal data shown in Figure 22 and Figure 23 was collected using the ASEK37002 Evaluation Board (TED-0002825). This board includes $750 \mathrm{~mm}^{2}$ of 4 oz . copper $(0.1388 \mathrm{~mm})$ connected to pins 1 through 4 , and to pins 5 through 8 , with thermal vias connecting the layers. Top and bottom layers of the PCB are shown below in Figure 24.

Figure 24: Top and Bottom Layers for ASEK37002 Evaluation Board

Gerber files for the ASEK37002 evaluation board are available for download from the Allegro website. See the technical documents section of the ACS37002 webpage.

PACKAGE OUTLINE DRAWINGS

Figure 25: Package MA, 16-Pin SOICW

Figure 26: Package LA, 16-PIN SOICW

Revision History

Number	Date	Description
-	June 24, 2020	Initial release
1	July 8, 2020	Updated Features and Benefits, Selection Guide (page 2), Working Voltage values (page 4), Footnote 2 (pages 10-19), Voltage Overcurrent Pin section (page 30), and Branding (page 38)
2	October 16, 2020	Updated Features and Benefits, Description, and Figure 1 (page 1); added UL certification (page 2); ; updated Selection Guide table (page 2), Forward Output Voltage and Reverse Output Voltage symbols (page 3), Isolation Characteristics and MA Package Specific Performance tables (page 4), Supply Voltage, Supply Bypass Capacitor, Primary Conductor Resistance, Power-On Reset Voltage, Power-On Time, Undervoltage and Undervoltage Detection Threshold (page 7), Rise Time, Response Time, Propagation Delay Time, Noise Density (page 8), VOC Operating Voltage Range, OCF Reaction Time, OCF Mask, OCF Response Time (page 9); added footnote 4 (page 9); Performance Characteristic tables (pages 10-19); ; pdated Current Sensing Range and Sensitivity values (pages 21-23); added Functional Description (pages 24-27), Definitions of Operating and Performance Characteristics (pages 28-32); updated Figure 20 (page 34), Theory and Functionality (pages 35-36).
2	December 16, 2020	Updated UVD and OVD Threshold test conditions (page 7); removed Overshoot and Settling Time sections and Figure 19 (page 33); fixed Figure 18 (page 33) graphical issue; updated Figure 19 (page 34), and other minor editorial updates.
3		

Copyright 2020, Allegro MicroSystems.
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.
Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.
Copies of this document are considered uncontrolled documents.
For the latest version of this document, visit our website:
www.allegromicro.com

[^0]: ${ }^{[1]}$ Refer to the part specific performance characteristics sections for Gain_Sel configuration.
 ${ }^{[2]}$ Contact Allegro for additional options.
 [3] The device performance is optimized from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; however, the device can still operate to an ambient temperature of $150^{\circ} \mathrm{C}$. The device shares the same qualifications as the L temperature devices unless otherwise stated.
 ${ }^{[4]}$ Advanced information. LA package variation is not yet released.

[^1]: ${ }^{[1]}$ Certification pending

[^2]: ${ }^{[1]}$ Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.

[^3]: ${ }^{[1]}$ Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
 ${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
 ${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

[^4]: [1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
 ${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
 ${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

[^5]: [[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.
 ${ }^{[2]}$ Typicals values are the mean ± 3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ± 3 sigma.
 ${ }^{[3]}$ Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Contact Allegro MicroSystems for further information.

[^6]: ${ }^{[1]}$ Typicals are based on worse case mean ± 3 sigma values during production or production and qualification.

[^7]: ${ }^{[1]}$ Typicals are based on worse case mean ± 3 sigma values during production or production and qualification.

[^8]: ${ }^{[1]}$ Typicals are based on worse case mean ± 3 sigma values during production or production and qualification.

