

HGC8631/HGC8632/HGC8634 470μA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifier

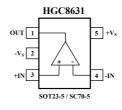
PRODUCT DESCRIPTION

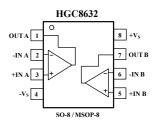
The HGC8631(single), HGC8632(dual), and HGC8634 (quad) are low noise, low voltage, and low power power operational amplifiers, that can be designed into a wide range of applications. The HGC8631/2/4 have a high gain-bandwidth product of 6MHz, a slew rate of $3.7V/\mu s$, and a quiescent current of $470\mu A/amplifier$ at 5V.

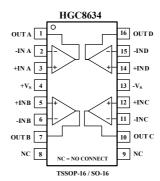
The HGC8631/2/4 are designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common-mode voltage range includes ground, and the maximum input offset voltage are 3.5mV for HGC8631/2/4. They are sp ecified over the extended industrial temperature range (-40°C to +125°C). The operating range is from 2.5V to 5.5V.

The single version, HGC8631, is available in SC70-5, and SOT23-5 packages. The dual version HGC8632 is available in SO-8 and MSOP-8 packages. The quad version HGC8634 is available in SO-16 and TSSOP-16 packages.

APPLICATIONS


Sensors
Audio
Active Filters
A/D Converters
Communications
Test Equipment
Cellular and Cordless Phones
Laptops and PDAs
Photodiode Amplification
Battery-Powered Instrumentation


FEATURES


- Low Cost
- Rail-to-Rail Input and Output 0.8mV Typical Vos
- High Gain-Bandwidth Product: 6MHz
- High Slew Rate: 3.7V/µs
- Settling Time to 0.1% with 2V Step: 2.1µs
- Overload Recovery Time: 0.9µs
- Low Noise : 12 nV/ \sqrt{Hz}
- Operates on 2.5 V to 5.5V Supplies
- Input Voltage Range = 0.1 V to +5.6 V with Vs = 5.5 V
- Low Power
 - 470µA/Amplifier Typical Supply Current
- Small Packaging

HGC8631 Available in SC70-5, SOT23-5 HGC8632 Available in MSOP-8 and SO-8 HGC8634 Available in TSSOP-16 and SO-16

PIN CONFIGURATIONS (Top View)

1

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
HGC8631M5/TR	SOT23-5	C8631	REEL	3000pcs/reel
HGC8631M7/TR	SC70-5	C8631	REEL	3000pcs/reel
HGC8632M/TR	SOP-8L	C8632	REEL	2500pcs/reel
HGC8632MM/TR	MSOP-8L	C8632	REEL	2500pcs/reel
HGC8634M/TR	SOP-16L	HGC8634	REEL	2500pcs/reel
HGC8634MT/TR	TSSOP-16L	C8634	REEL	2500pcs/reel

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	7
Common-Mode Input Voltage	
$(-Vs) - 0.5 V$ to $(+Vs) + 0.5V$	r
Storage Temperature Range –65 $^{\circ}\mathrm{C}$ to +150 $^{\circ}\mathrm{C}$	7
Junction Temperature160 $^{\circ}$ C	
Operating Temperature Range55℃ to +150℃	
Package Thermal Resistance @ T _A = 25 °C	
SC70-5, θ _J A	Ţ
SOT23-5, θ _{JA}	7
SO-8, θ _J A125°C/W	Ī
MSOP-8, θ _{JA}	r
SO-16, θ _J A	V
TSSOP-16, θ _{JA}	V
Lead Temperature Range (Soldering 10 sec)	
260°C	7
ESD Susceptibility	
HBM	7
MM 4007	7

NOTES

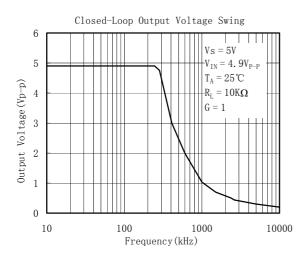
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

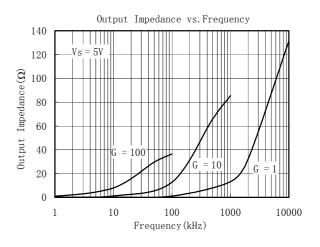
CAUTION

This integrated circuit can be damaged by ESD. Shengbang Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

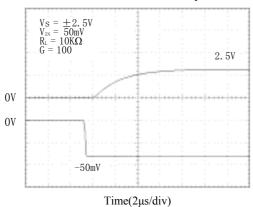
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

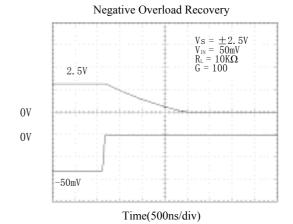
ELECTRICAL CHARACTERISTICS: Vs = +5V

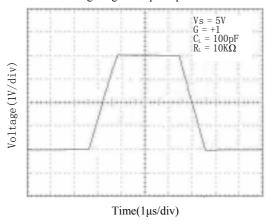

(At $T_A = +25$ °C, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted)

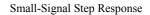

ндс					C8631/2/4	8631/2/4			
PARAMETER	CONDITION	TYP	TYP MIN/MAX OVER T				TEMPERATURE		
		+25℃	+25℃	0℃ to 70℃	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ MAX	
INPUT CHARACTERISTICS									
Input Offset Voltage (Vos)		0.8	3.5	3.9	4.3	4.6	mV	MAX	
Input Bias Current (I _B)		1					pА	TYP	
Input Offset Current (I _{OS})		1					pА	TYP	
Common-Mode Voltage Range (V _{CM})	V _S = 5.5V	-0.1 to +5.6					V	TYP	
Common-Mode Rejection Ratio(CMRR)	$V_S = 5.5V, V_{CM} = -0.1V \text{ to 4 V}$	90	75	74	74	73	dB	MIN	
	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6 V	83					dB	MIN	
Open-Loop Voltage Gain(A _{OL})	$R_L = 600\Omega$, $Vo = 0.15V$ to 4.85V	97	90	87	86	79	dB	MIN	
	$R_L = 10K\Omega$, $Vo = 0.05V$ to 4.95V	108					dB	MIN	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)		2.4					μV/°C	TYP	
OUTPUT CHARACTERISTICS									
Output Voltage Swing from Rail	$R_1 = 600\Omega$	0.1					V	TYP	
catput rollage chang non-tan	$R_L = 10K\Omega$	0.015					V		
Output Current (I _{OUT})	10102	53	49	45	40	35	mA	MIN	
Closed-Loop Output Impedance	F = 200KHz, G = 1	3	.0		10		Ω	TYP	
POWER-DOWN DISABLE	. 2001.11.12, 0								
Turn-On Time		4					μs	TYP	
Turn-Off Time		1.2					μs	TYP	
DISABLE Voltage-Off		1.2	0.8				μs V	MAX	
DISABLE Voltage-On			2				V	MIN	
							V	IVIIIV	
POWER SUPPLY			0.5	0.5	0.5	0.5	.,		
Operating Voltage Range			2.5	2.5	2.5	2.5	V	MIN	
December 1	V .05V(55V		5.5	5.5	5.5	5.5	V	MAX	
Power Supply Rejection Ratio (PSRR)	$V_s = +2.5 \text{ V to } +5.5 \text{ V}$		00		70				
0: 10 (// // // // // // // // // // // // //	$V_{CM} = (-V_S) + 0.5V$	91	80	78	78	77	dB	MIN	
Quiescent Current/ Amplifier (I _Q)	I _{OUT} = 0	470	590	660	680	740	μA	MAX	
Supply Current when Disabled									
(SGM8633 only)		90					nA	MAX	
DYNAMIC PERFORMANCE									
Gain-Bandwidth Product (GBP)	$R_L = 10K\Omega$	6					MHz	TYP	
Phase Margin(φ ₀)		60		1			degrees	TYP	
Full Power Bandwidth(BW _P)	$<$ 1% distortion, R _L = 600 Ω	250		1			KHz	TYP	
Slew Rate (SR)	$G = +1$, 2V Step, $R_L = 10K\Omega$	3.7		1			V/µs	TYP	
Settling Time to 0.1%(t _S)	$G = +1, 2 V Step, R_L = 600Ω$	2.1		1			μs	TYP	
Overload Recovery Time	V_{IN} ·Gain = Vs, R_L = 600 Ω	0.9		ļ			μs	TYP	
NOISE PERFORMANCE				1					
Voltage Noise Density (en)	f = 1kHz	12		1			$\text{nV}/_{\sqrt{Hz}}$	TYP	
Current Noise Density(in)	f = 1kHz	3					$fA / \sqrt{\mathit{Hz}}$	TYP	

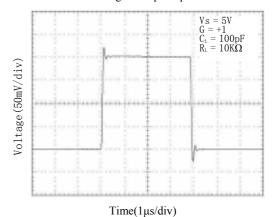
Specifications subject to change without notice.



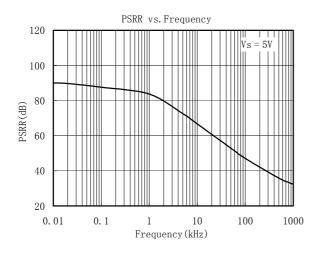

At $T_A = +25$ °C, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.



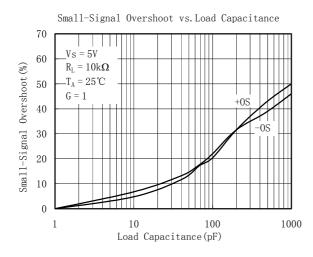

Positive Overload Recovery

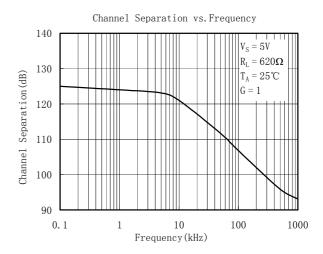


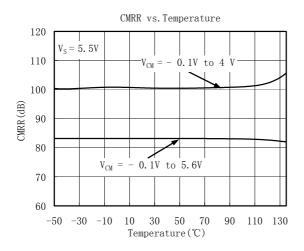
Large-Signal Step Response

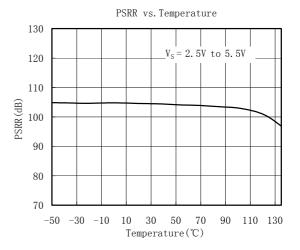


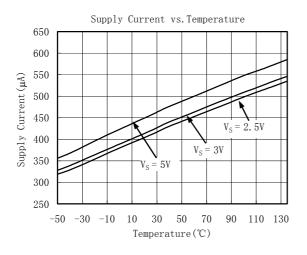


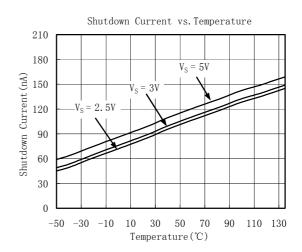


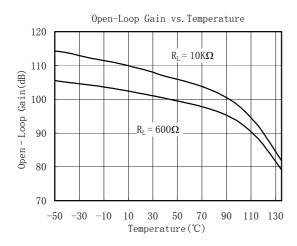


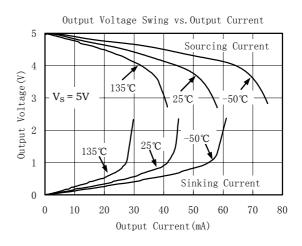

At $T_A = +25$ °C, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.

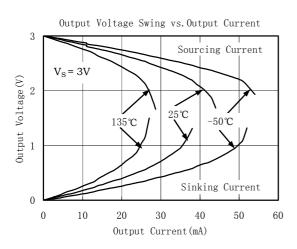


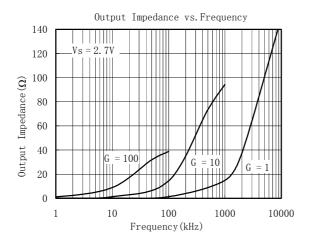


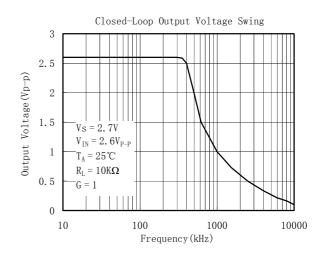


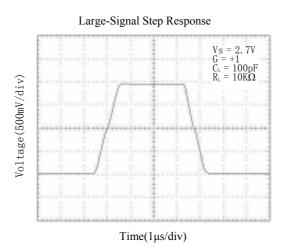


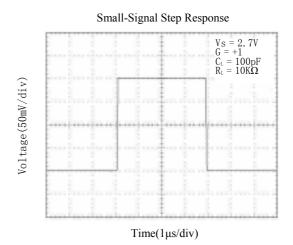


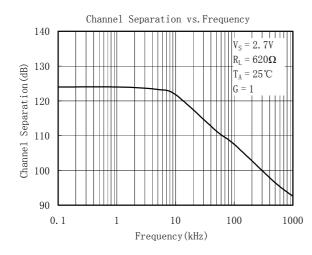

At $T_A = +25$ °C, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.

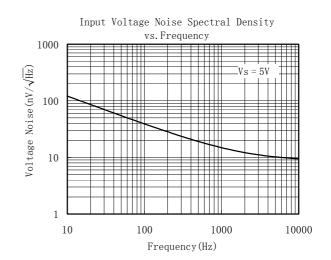


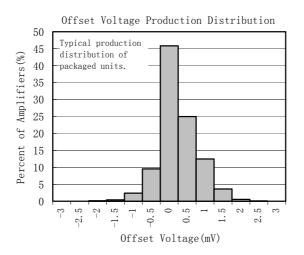







At $T_A = +25$ °C, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.





At $T_A = +25$ °C, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.

8

APPLICATION NOTES

Driving Capacitive Loads

The HGC863x can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

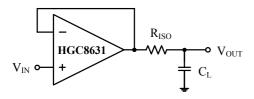


Figure 1. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting signal with the output. C_{F} and R_{Iso} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

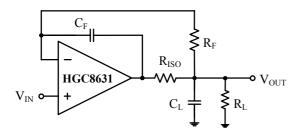


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The HGC863x family operates from either a single +2.5V to +5.5V supply or dual $\pm 1.25V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply V_{DD} with a $0.1\mu F$ ceramic capacitor which should be placed close to the V_{DD} pin. For dual-supply operation, both the V_{DD} and the V_{SS} supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency big current loop area small to minimize the EMI (electromagnetic interfacing).

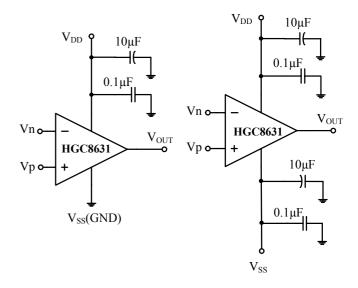


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for HGC863x circuit design. The length of the current path speed currents in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback.

Typical Application Circuits

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal (R4 / R3 = R2 / R1), then V_{OUT} = (V_{D} – V_{D}) × V_{D} + V_{D} (V_{D} – V_{D}) × V_{D} + $V_$

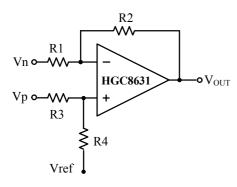


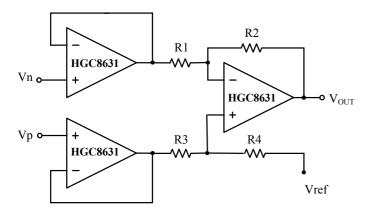
Figure 4. Differential Amplifier

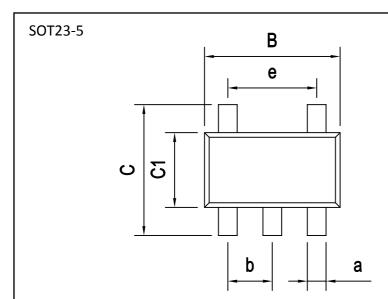
R1 R2 WOUT R3=R1//R2

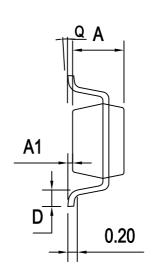
Figure 6. Low Pass Active Filter

Instrumentation Amplifier

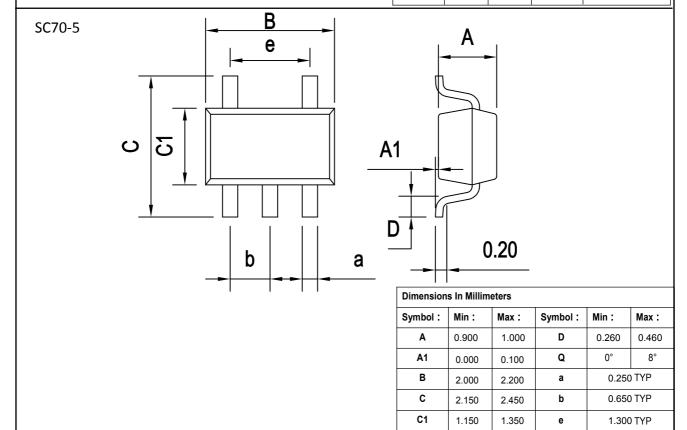
The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance.



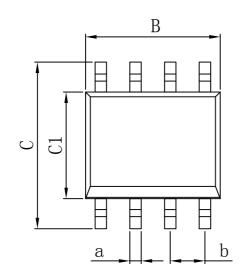

Figure 5. Instrumentation Amplifier

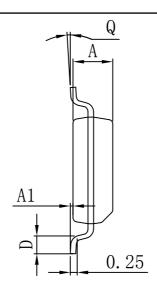

Low Pass Active Filter

The low pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2$ C. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

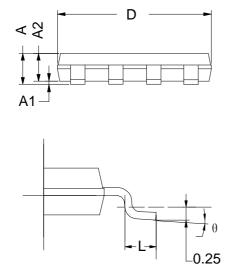


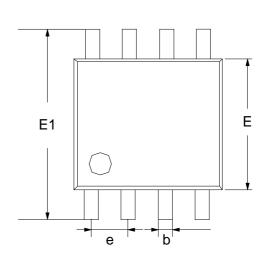
PACKAGE


Dimensions In Millimeters							
Symbol:	Min:	Max:	Symbol:	Min :	Max:		
Α	1.050	1.150	D	0.300	0.600		
A1	0.000	0.100	Q	0°	8°		
В	2.820	3.020	а	0.400 TYP			
С	2.650	2.950	b	0.950 TYP			
C1	1.500	1.700	е	1.900 TYP			



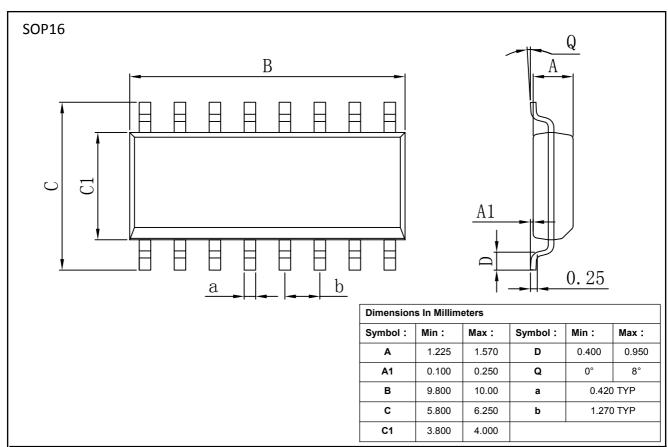
PACKAGE

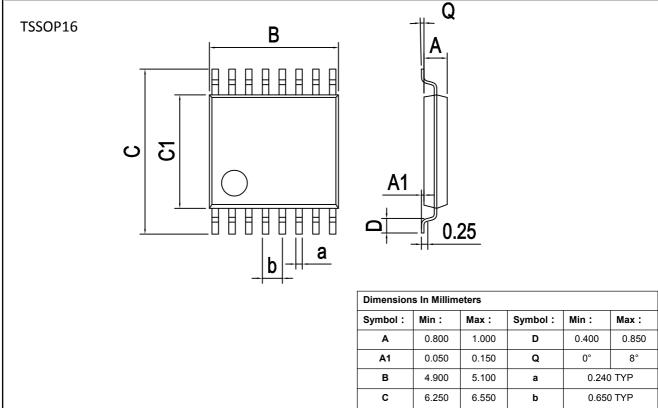

SOP8



Dimensions In Millimeters							
Symbol :	Min:	Max:	Symbol:	Min:	Max:		
Α	1.225	1.570	D	0.400	0.950		
A1	0.100	0.250	Q	0°	8°		
В	4.800	5.100	а	0.420 TYP			
С	5.800	6.250	b	1.270 TYP			
C1	3.800	4.000		•			

MSOP8





Dimensions In Millimeters							
Symbol:	Min:	Max:	Symbol :	Min:	Max:		
Α	0.800	1.200	E1	4.700	5.100		
A1	0	0.200	L	0.410	0.650		
A2	0.760	0.970	θ	0°	6°		
D	2.900	3.100	b	0.300 TYP			
E	2.900	3.100	е	0.650 TYP			

PACKAGE

C1

4.300

4.500

2022 JAN

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.