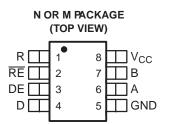
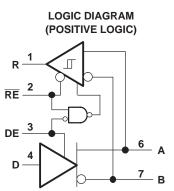

## **HIGH OUTPUT RS-485 TRANSCEIVERS**

### **FEATURES**

- Minimum Differential Output Voltage of 2.5 V Into a 54- $\Omega$  Load
- Open-Circuit, Short-Circuit, and Idle-Bus Failsafe Receiver
- 1/8<sup>th</sup> Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- Driver Output Slew Rate Control Options
- Electrically Compatible With ANSI TIA/EIA-485-A Standard
- Low-Current Standby Mode ... 1 µA Typical
- Glitch-Free Power-Up and Power-Down
  Protection for Hot-Plugging Applications
- Pin Compatible With Industry Standard SN75176

### APPLICATIONS


- Data Transmission Over Long or Lossy Lines or Electrically Noisy Environments
- Profibus Line Interface
- Industrial Process Control Networks
- Point-of-Sale (POS) Networks
- Electric Utility Metering
- Building Automation
- Digital Motor Control




## DESCRIPTION

SN75HVD05. The SN65HVD05. SN65HVD06, SN75HVD06, SN65HVD07, and SN75HVD07 combine a 3-state differential line driver and differential line receiver. They are designed for balanced data transmission and interoperate with ANSI TIA/EIA-485-A and ISO 8482E standard-compliant devices. The driver is designed to provide a differential output voltage greater than that required by these standards for increased noise margin. The drivers and receivers have active-high and active-low enables respectively, which can be externally connected together to function as direction control.

The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or not powered. These devices feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.







### **ORDERING INFORMATION**

| DEVICE          | Package Type | MARKING | Packing | Packing Qty  |
|-----------------|--------------|---------|---------|--------------|
| SN65HVD05EIN    | DIP8L        | 65HVD05 | TUBE    | 2000pcs/box  |
| SN65HVD06EIN    | DIP8L        | 65HVD06 | TUBE    | 2000pcs/box  |
| SN65HVD07EIN    | DIP8L        | 65HVD07 | TUBE    | 2000pcs/box  |
| SN75HVD05ECN    | DIP8L        | 65HVD05 | TUBE    | 2000pcs/box  |
| SN75HVD06ECN    | DIP8L        | 65HVD06 | TUBE    | 2000pcs/box  |
| SN75HVD07ECN    | DIP8L        | 65HVD07 | TUBE    | 2000pcs/box  |
| SN65HVD05EIM/TR | SOP8L        | 65HVD05 | REEL    | 2500pcs/reel |
| SN65HVD06EIM/TR | SOP8L        | 65HVD06 | REEL    | 2500pcs/reel |
| SN65HVD07EIM/TR | SOP8L        | 65HVD07 | REEL    | 2500pcs/reel |
| SN75HVD05ECM/TR | SOP8L        | 65HVD05 | REEL    | 2500pcs/reel |
| SN75HVD06ECM/TR | SOP8L        | 65HVD06 | REEL    | 2500pcs/reel |
| SN75HVD07ECM/TR | SOP8L        | 65HVD07 | REEL    | 2500pcs/reel |

### PACKAGE DISSIPATION RATINGS

(See Figure 12 and Figure 13)

| PACKAGE          | T <sub>A</sub> ≤ 25°C<br>POWER RATING | DERATING FACTOR <sup>(1)</sup><br>ABOVE $T_A = 25^{\circ}C$ | T <sub>A</sub> = 70°C<br>POWER RATING | T <sub>A</sub> = 85°C<br>POWER RATING |
|------------------|---------------------------------------|-------------------------------------------------------------|---------------------------------------|---------------------------------------|
| D <sup>(2)</sup> | 710 mW                                | 5.7 mW/°C                                                   | 455 mW                                | 369 mW                                |
| D <sup>(3)</sup> | 1282 mW                               | 10.3 mW/°C                                                  | 821 mW                                | 667 mW                                |
| Р                | 1000 mW                               | 8.0 mW/°C                                                   | 640 mW                                | 520 mW                                |

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

(2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3

(3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7

### **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range unless otherwise noted<sup>(1)(2)</sup>

|                                    |                                     |                              | SN65HVD05, SN65HVD06, SN65HVD07<br>SN75HVD05, SN75HVD06, SN75HVD07 |
|------------------------------------|-------------------------------------|------------------------------|--------------------------------------------------------------------|
| Supply voltage range, Vo           | C                                   |                              | -0.3 V to 6 V                                                      |
| Voltage range at A or B            |                                     |                              | -9 V to 14 V                                                       |
| Input voltage range at D,          | DE, R or RE                         |                              | -0.5 V to V <sub>CC</sub> + 0.5 V                                  |
| Voltage input range, tran          | sient pulse, A and B, through 100   | -50 V to 50 V                |                                                                    |
| Receiver output current,           | Io                                  |                              | -11 mA to 11mA                                                     |
|                                    |                                     | A, B, and GND                | 16 kV                                                              |
| Electrostatic discharge            | Human body model <sup>(3)</sup>     | All pins                     | 4 kV                                                               |
|                                    | Charged-device model <sup>(4)</sup> | All pins                     | 1 kV                                                               |
| Continuous total power dissipation |                                     | See Dissipation Rating Table |                                                                    |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under" recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

- (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
- (4) Tested in accordance with JEDEC Standard 22, Test Method C101.



### **RECOMMENDED OPERATING CONDITIONS**

|                                                      |                                                      | MIN   | NOM MAX | UNIT |
|------------------------------------------------------|------------------------------------------------------|-------|---------|------|
| Supply voltage, V <sub>CC</sub>                      |                                                      | 4.5   | 5.5     | V    |
| Voltage at any bus terminal (separate                | ly or common mode) V <sub>I</sub> or V <sub>IC</sub> | -7(1) | 12      | V    |
| High-level input voltage, V <sub>IH</sub>            | D, DE, RE                                            | 2     |         | V    |
| Low-level input voltage, V <sub>IL</sub>             | D, DE, RE                                            |       | 0.8     | V    |
| Differential input voltage, V <sub>ID</sub> (see Fig | ure 7)                                               | -12   | 12      | V    |
|                                                      | Driver                                               | -100  |         |      |
| High-level output current, I <sub>OH</sub>           | Receiver                                             | -8    |         | mA   |
| Low-level output current, I <sub>OL</sub>            | Driver                                               |       | 100     |      |
|                                                      | Receiver                                             |       | 8       | mA   |
|                                                      | SN65HVD05                                            |       |         |      |
|                                                      | SN65HVD06                                            | -40   | 85      | °C   |
| Operating free-air temperature, $T_A$                | SN65HVD07                                            |       |         |      |
|                                                      | SN75HVD05                                            |       |         |      |
|                                                      | SN75HVD06                                            | 0     | 70      | °C   |
|                                                      | SN75HVD07                                            |       |         |      |

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

## **DRIVER ELECTRICAL CHARACTERISTICS**

over operating free-air temperature range unless otherwise noted

| PARAMETER                      |                                                                | TEST CONDITIONS |                                                                       | MIN                                                   | TYP <sup>(1)</sup> | MAX | UNIT     |    |
|--------------------------------|----------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|-------------------------------------------------------|--------------------|-----|----------|----|
| V <sub>IK</sub>                | Input clamp voltage                                            |                 | I <sub>I</sub> = -18 mA                                               |                                                       | -1.5               |     |          | V  |
|                                |                                                                |                 | No Load                                                               |                                                       |                    |     | $V_{CC}$ |    |
| V <sub>OD</sub>                | Differential output voltage                                    |                 | $R_L = 54 \Omega$ , See Figure                                        | e 4                                                   | 2.5                |     |          | V  |
|                                |                                                                |                 | $V_{\text{test}} = -7 \text{ V to } 12 \text{ V}, \text{ S}$          | See Figure 2                                          | 2.2                |     |          |    |
| $\Delta  V_{OD} $              | Change in magnitude of differential voltage                    | output          | See Figure 4 and Fig                                                  | ure 2                                                 | -0.2               |     | 0.2      | V  |
| V <sub>OC(SS)</sub>            | Steady-state common-mode output                                | t voltage       |                                                                       |                                                       | 2.2                |     | 3.3      | V  |
| $\Delta V_{OC(SS)}$            | Change in steady-state common-m<br>output voltage              |                 |                                                                       |                                                       | -0.1               |     | 0.1      | V  |
|                                |                                                                | HVD05           |                                                                       |                                                       | 600                |     |          |    |
| V <sub>OC(PP)</sub>            | V <sub>OC(PP)</sub> Peak-to-peak common-mode<br>output voltage |                 | See Figure 3                                                          |                                                       |                    | 500 |          | mV |
| ouput voltage                  |                                                                | HVD07           |                                                                       |                                                       | 900                |     |          |    |
| I <sub>OZ</sub>                | High-impedance output current                                  |                 | See receiver input currents                                           |                                                       |                    |     |          |    |
|                                | Input current                                                  | D               |                                                                       |                                                       | -100               |     | 0        | μA |
| I <sub>I</sub>                 | input current                                                  | DE              |                                                                       |                                                       | 0                  |     | 100      | μΑ |
| I <sub>OS</sub>                | Short-circuit output current                                   |                 | -7 V $\leq$ V <sub>O</sub> $\leq$ 12 V                                |                                                       | -250               |     | 250      | mA |
| C <sub>(diff)</sub>            | Differential output capacitance                                |                 | $V_{ID} = 0.4 \sin (4E6\pi t)$                                        | + 0.5 V, DE at 0 V                                    |                    | 16  |          | pF |
|                                |                                                                |                 | RE at V <sub>CC</sub> ,<br>D & DE at V <sub>CC</sub> ,<br>No load     | Receiver disabled and driver enabled                  |                    | 9   | 15       | mA |
| I <sub>CC</sub> Supply current |                                                                |                 | RE at V <sub>CC</sub> ,<br>D at V <sub>CC</sub> DE at 0 V,<br>No load | Receiver disabled<br>and driver disabled<br>(standby) |                    | 1   | 5        | μA |
|                                |                                                                |                 | RE at 0 V,<br>D & DE at V <sub>CC</sub> ,<br>No load                  | Receiver enabled and driver enabled                   |                    | 9   | 15       | mA |

(1) All typical values are at  $25^{\circ}$ C and with a 5-V supply.



### **DRIVER SWITCHING CHARACTERISTICS**

over operating free-air temperature range unless otherwise noted

|                                    | PARAMETER                                                      |                                                              | TEST CONDITIONS                                                | MIN | TYP <sup>(1)</sup> | MAX | UNIT |  |
|------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-----|--------------------|-----|------|--|
|                                    |                                                                | HVD05                                                        |                                                                |     | 6.5                | 11  |      |  |
| t <sub>PLH</sub>                   | Propagation delay time, low-to-high-level output               | HVD06                                                        |                                                                |     | 27                 | 40  | ns   |  |
|                                    |                                                                | HVD07                                                        |                                                                |     | 250                | 400 |      |  |
|                                    |                                                                | HVD05                                                        |                                                                |     | 6.5                | 11  |      |  |
| t <sub>PHL</sub>                   | Propagation delay time, high-to-low-level output               | HVD06                                                        |                                                                |     | 27                 | 40  | ns   |  |
|                                    |                                                                | HVD07                                                        |                                                                |     | 250                | 400 |      |  |
|                                    |                                                                | HVD05                                                        |                                                                | 2.7 | 3.6                | 6   |      |  |
| r                                  | Differential output signal rise time                           | HVD06                                                        | $R_L = 54 \Omega, C_L = 50 pF,$<br>See Figure 4                | 18  | 28                 | 55  | ns   |  |
|                                    |                                                                | HVD07                                                        |                                                                | 150 | 300                | 450 |      |  |
|                                    |                                                                | HVD05                                                        |                                                                | 2.7 | 3.6                | 6   |      |  |
| t <sub>f</sub>                     | Differential output signal fall time                           | HVD06                                                        |                                                                | 18  | 28                 | 55  | ns   |  |
|                                    |                                                                | HVD07                                                        |                                                                | 150 | 300                | 450 |      |  |
|                                    |                                                                | HVD05                                                        |                                                                |     |                    | 2   |      |  |
| sk(p)                              | Pulse skew ( t <sub>PHL</sub> - t <sub>PLH</sub>  ) HVD06      |                                                              |                                                                |     | 2.5                | ns  |      |  |
|                                    |                                                                | HVD07                                                        |                                                                |     |                    | 10  |      |  |
|                                    |                                                                | HVD05                                                        |                                                                |     |                    | 3.5 |      |  |
| t <sub>sk(pp)</sub> <sup>(2)</sup> | Part-to-part skew                                              | t-to-part skew HVD06                                         |                                                                |     |                    | 14  | ns   |  |
|                                    |                                                                | HVD07                                                        |                                                                |     |                    | 100 |      |  |
|                                    |                                                                | ropagation delay time,<br>the impedance to bick level output |                                                                |     |                    | 25  |      |  |
| t <sub>PZH1</sub>                  | Propagation delay time,<br>high-impedance-to-high-level output |                                                              |                                                                |     |                    | 45  | ns   |  |
|                                    | nigh impedance to high level output                            | HVD07                                                        | $\overline{\text{RE}}$ at 0 V, $R_{\text{L}}$ = 110 $\Omega$ , |     |                    | 250 |      |  |
|                                    |                                                                | HVD05                                                        | See Figure 5                                                   |     | 25                 |     |      |  |
| PHZ                                | Propagation delay time,<br>high-level-to-high-impedance output | HVD06                                                        |                                                                | 60  |                    | ns  |      |  |
|                                    | nigh level to high impedance output                            | HVD07                                                        |                                                                | 250 |                    |     |      |  |
|                                    |                                                                | HVD05                                                        |                                                                |     |                    | 15  |      |  |
| PZL1                               | Propagation delay time,<br>high-impedance-to-low-level output  | HVD06                                                        |                                                                |     |                    | 45  | ns   |  |
|                                    | nigh impedance to low level output                             | HVD07                                                        | $\overline{RE}$ at 0 V, $R_L = 110 \Omega$ ,                   |     |                    | 200 |      |  |
|                                    |                                                                | HVD05                                                        | See Figure 6                                                   |     |                    | 14  |      |  |
| t <sub>PLZ</sub>                   | Propagation delay time,<br>low-level-to-high-impedance output  | HVD06                                                        |                                                                |     |                    | 90  | ns   |  |
|                                    |                                                                | HVD07                                                        |                                                                |     |                    | 550 |      |  |
| PZH2                               | Propagation delay time, standby-to-high-level output           | t                                                            | $R_L = 110\Omega$ , $\overline{RE}$ at 3 V,<br>See Figure 5    |     |                    | 6   | μs   |  |
| PZL2                               | Propagation delay time, standby-to-low-level output            |                                                              | $R_L = 110 \Omega$ , $\overline{RE}$ at 3 V,<br>See Figure 6   |     |                    | 6   | μs   |  |

(1) All typical values are at 25°C and with a 5-V supply.

(2) t<sub>sk(pp)</sub> is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.



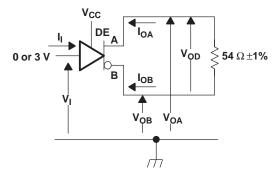
## **RECEIVER ELECTRICAL CHARACTERISTICS**

over operating free-air temperature range unless otherwise noted

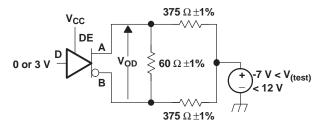
|                     | PARAMETER                                                    |         | 1                                                                                     | TEST CONDITIONS                                     |                    | MIN   | TYP <sup>(1)</sup> | MAX     | UNIT                                 |  |      |      |  |  |
|---------------------|--------------------------------------------------------------|---------|---------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|-------|--------------------|---------|--------------------------------------|--|------|------|--|--|
| V <sub>IT+</sub>    | Positive-going input threshold voltage                       | ut      | I <sub>O</sub> = -8 mA                                                                |                                                     |                    |       |                    | 0.01    | V                                    |  |      |      |  |  |
| V <sub>IT-</sub>    | Negative-going inp<br>threshold voltage                      | out     | I <sub>O</sub> = 8 mA                                                                 |                                                     |                    | -0.2  |                    |         | v                                    |  |      |      |  |  |
| V <sub>hys</sub>    | Hysteresis voltage<br>(V <sub>IT+</sub> - V <sub>IT-</sub> ) | )       |                                                                                       |                                                     |                    |       | 35                 |         | mV                                   |  |      |      |  |  |
| V <sub>IK</sub>     | Enable-input clam<br>voltage                                 | р       | I <sub>I</sub> = -18 mA                                                               |                                                     |                    | -1.5  |                    |         | V                                    |  |      |      |  |  |
| V <sub>OH</sub>     | High-level output                                            | /oltage | V <sub>ID</sub> = 200 mV,                                                             | I <sub>OH</sub> = -8 mA,                            | See Figure 7       | 4     |                    |         | V                                    |  |      |      |  |  |
| V <sub>OL</sub>     | Low-level output v                                           | oltage  | $V_{ID} = -200 \text{ mV},$                                                           | I <sub>OL</sub> = 8 mA,                             | See Figure 7       |       |                    | 0.4     | V                                    |  |      |      |  |  |
| I <sub>OZ</sub>     | High-impedance-s<br>output current                           | tate    | $V_{O} = 0 \text{ or } V_{CC}$                                                        | $\overline{\text{RE}}$ at V <sub>CC</sub>           |                    | -1    |                    | 1       | μA                                   |  |      |      |  |  |
|                     |                                                              |         |                                                                                       | $V_A \text{ or } V_B = 12 \text{ V}$                |                    |       | 0.23               | 0.5     |                                      |  |      |      |  |  |
|                     |                                                              | HVD05   | Other inputat 0 V                                                                     | $V_A \text{ or } V_B = 12 \text{ V},$               | $V_{CC} = 0 V$     |       | 0.3                | 0.3 0.5 | mA                                   |  |      |      |  |  |
|                     | Bus input current                                            | 110005  |                                                                                       | $V_A \text{ or } V_B = -7 \text{ V}$                |                    | -0.4  | 0.13               |         |                                      |  |      |      |  |  |
| l <sub>l</sub>      |                                                              |         |                                                                                       | $V_A \text{ or } V_B = -7 \text{ V},$               | $V_{CC} = 0 V$     | -0.4  | 0.15               |         |                                      |  |      |      |  |  |
| "                   | Bus input current                                            |         |                                                                                       | $V_A \text{ or } V_B = 12 \text{ V}$                |                    |       | 0.06               | 0.1     |                                      |  |      |      |  |  |
|                     |                                                              | HVD06   | Other inputat 0 V                                                                     | $V_A \text{ or } V_B = 12 \text{ V},$               | $V_{CC} = 0 V$     |       | 0.08               | 0.13    | mA                                   |  |      |      |  |  |
|                     |                                                              | HVD07   | HVD07                                                                                 | HVD07                                               | HVD07              | HVD07 | HVD07              |         | $V_A \text{ or } V_B = -7 \text{ V}$ |  | -0.1 | 0.05 |  |  |
|                     |                                                              |         |                                                                                       | $V_A$ or $V_B$ = -7 V,                              | $V_{CC} = 0 V$     | -0.05 | 0.03               |         |                                      |  |      |      |  |  |
| I <sub>IH</sub>     | High-level input cu<br>RE                                    | urrent, | $V_{IH} = 2 V$                                                                        |                                                     |                    | -60   | 26.4               |         | μA                                   |  |      |      |  |  |
| I <sub>IL</sub>     | Low-level input cu<br>RE                                     | rrent,  | $V_{IL} = 0.8 V$                                                                      |                                                     |                    | -60   | 27.4               |         | μA                                   |  |      |      |  |  |
| C <sub>(diff)</sub> | Differential input capacitance                               |         | $V_{I} = 0.4 \sin (4E6\pi t) + 0$                                                     | V <sub>I</sub> = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V |                    |       | 16                 |         | pF                                   |  |      |      |  |  |
|                     |                                                              |         | RE at 0 V, D & DE at<br>0 V, No load                                                  | Receiver enabled an                                 | d driver disabled  |       | 5                  | 10      | mA                                   |  |      |      |  |  |
| I <sub>CC</sub>     | Supply current                                               |         | $\overline{\text{RE}}$ at V <sub>CC</sub> , DE at 0 V, D at V <sub>CC</sub> , No load | Receiver disabled an (standby)                      | nd driver disabled |       | 1                  | 5       | μA                                   |  |      |      |  |  |
|                     |                                                              |         | RE at 0 V,<br>D & DE at V <sub>CC</sub> ,<br>No load                                  | Receiver enabled an                                 | d driver enabled   |       | 9                  | 15      | mA                                   |  |      |      |  |  |

(1) All typical values are at  $25^{\circ}$ C and with a 5-V supply.




#### **RECEIVER SWITCHING CHARACTERISTICS**

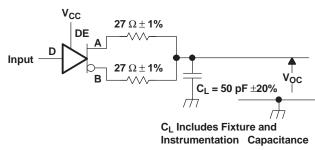
over operating free-air temperature range unless otherwise noted

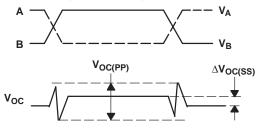

|                                    | PARAMETER                                               |                   | TEST CONDITIONS                            | MIN | TYP <sup>(1)</sup> | MAX | UNIT |
|------------------------------------|---------------------------------------------------------|-------------------|--------------------------------------------|-----|--------------------|-----|------|
| t <sub>PLH</sub>                   | Propagation delay time, low-to-high-level output 1/2 UL | HVD05             |                                            |     | 14.6               | 25  | ns   |
| t <sub>PHL</sub>                   | Propagation delay time, high-to-low-level output 1/2 UL | HVD05             |                                            |     | 14.6               | 25  | ns   |
| +                                  | Propagation delay time, low-to-high-level output 1/8 UL | HVD06             |                                            |     | 55                 | 70  | 20   |
| t <sub>PLH</sub>                   |                                                         | HVD07             | V <sub>ID</sub> = -1.5 V to 1.5 V,         |     | 55                 | 70  | ns   |
|                                    | Drangation dology time, high to low loval output 1/0 LI | HVD06             | $C_{L} = 15  \text{pF},$                   |     | 55                 | 70  | ~~~  |
| t <sub>PHL</sub>                   | Propagation delay time, high-to-low-level output 1/8 UL | HVD07             | See Figure 8                               |     | 55                 | 70  | ns   |
|                                    |                                                         | HVD05             |                                            |     |                    | 2   |      |
| t <sub>sk(p)</sub>                 | Pulse skew ( t <sub>PHL</sub> - t <sub>PLH</sub>  )     | HVD06             |                                            |     |                    | 4.5 | ns   |
|                                    |                                                         | HVD07             |                                            |     |                    | 4.5 |      |
|                                    |                                                         | o-part skew HVD05 |                                            |     |                    | 6.5 |      |
| t <sub>sk(pp)</sub> <sup>(2)</sup> | Part-to-part skew                                       |                   |                                            |     |                    | 14  | ns   |
|                                    |                                                         | HVD07             |                                            |     |                    | 14  |      |
| t <sub>r</sub>                     | Output signal rise time                                 |                   | C <sub>L</sub> = 15 pF,                    |     | 2                  | 3   |      |
| t <sub>f</sub>                     | Output signal fall time                                 |                   | See Figure 8                               |     | 2                  | 3   | ns   |
| t <sub>PZH1</sub>                  | Output enable time to high level                        |                   |                                            |     |                    | 10  |      |
| t <sub>PZL1</sub>                  |                                                         |                   | $C_{L} = 15 \text{ pF},$                   |     |                    | 10  |      |
| t <sub>PHZ</sub>                   |                                                         |                   | DE at 3 V,<br>See Figure 9                 |     |                    | 15  | ns   |
| t <sub>PLZ</sub>                   | Output disable time from low level                      |                   |                                            |     |                    | 15  |      |
| t <sub>PZH2</sub>                  |                                                         |                   | $C_{L} = 15 \text{ pF}, \text{ DE at } 0,$ |     |                    | 6   |      |
| t <sub>PZL2</sub>                  |                                                         |                   | See Figure 10                              |     |                    | 6   | μs   |

All typical values are at 25°C and with a 5-V supply.
 t<sub>sk(pp)</sub> is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

### PARAMETER MEASUREMENT INFORMATION

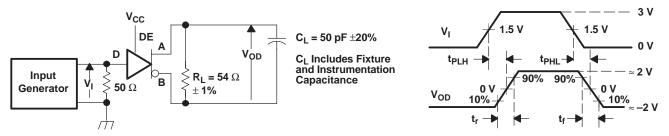



#### Figure 1. Driver V<sub>OD</sub> Test Circuit and Voltage and Current Definitions



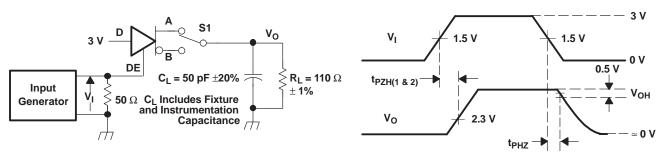






#### **PARAMETER MEASUREMENT INFORMATION (continued)**






Input: PRR = 500 kHz, 50% Duty Cycle, $t_r$ <6ns,  $t_f$ <6ns,  $Z_O$  = 50  $\Omega$ 

#### Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage



Generator: PRR = 500 kHz, 50% Duty Cycle,  $t_r$  <6 ns,  $t_f$  <6 ns,  $Z_o$  = 50  $\Omega$ 

#### Figure 4. Driver Switching Test Circuit and Voltage Waveforms



Generator: PRR = 100 kHz, 50% Duty Cycle,  $t_r$  <6 ns,  $t_f$  <6 ns,  $Z_o$  = 50  $\Omega$ 

#### Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms



Generator: PRR = 100 kHz, 50% Duty Cycle, t\_r <6 ns, t\_f <6 ns, Z\_o = 50  $\Omega$ 

#### Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms



## PARAMETER MEASUREMENT INFORMATION (continued)

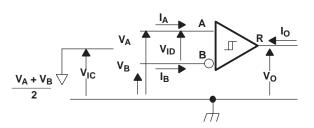
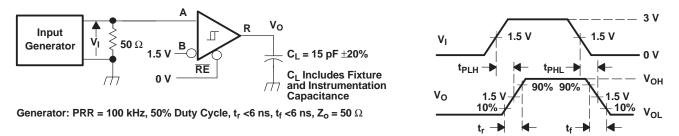
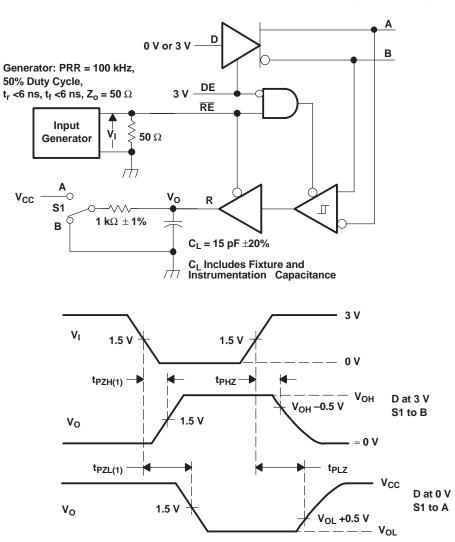





Figure 7. Receiver Voltage and Current Definitions









## PARAMETER MEASUREMENT INFORMATION (continued)

Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled



### PARAMETER MEASUREMENT INFORMATION (continued)

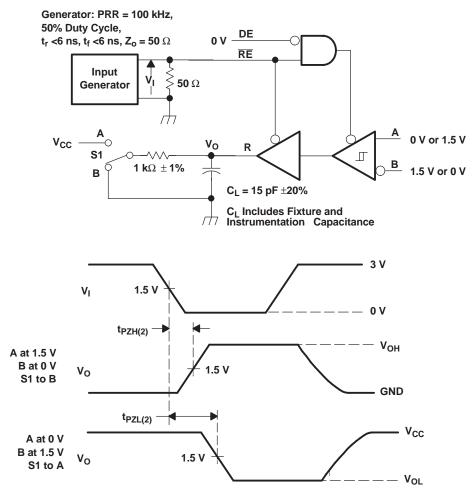
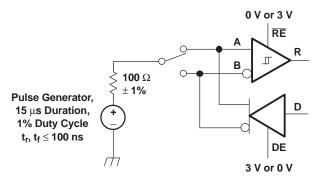




Figure 10. Receiver Enable Time From Standby (Driver Disabled)



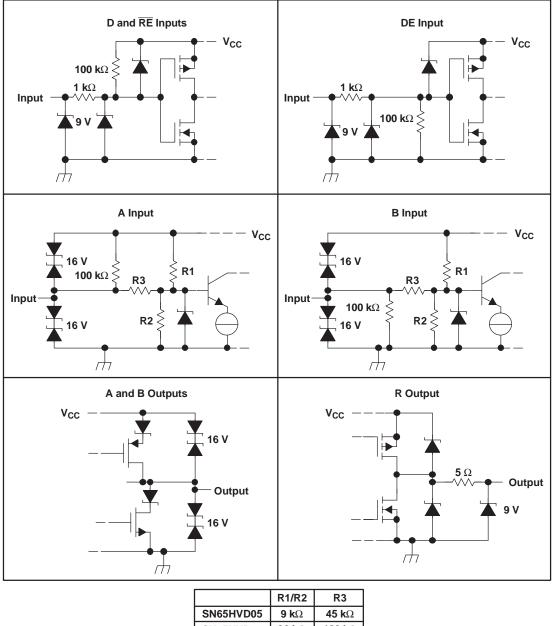
NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 11. Test Circuit, Transient Over Voltage Test



## **FUNCTION TABLES**

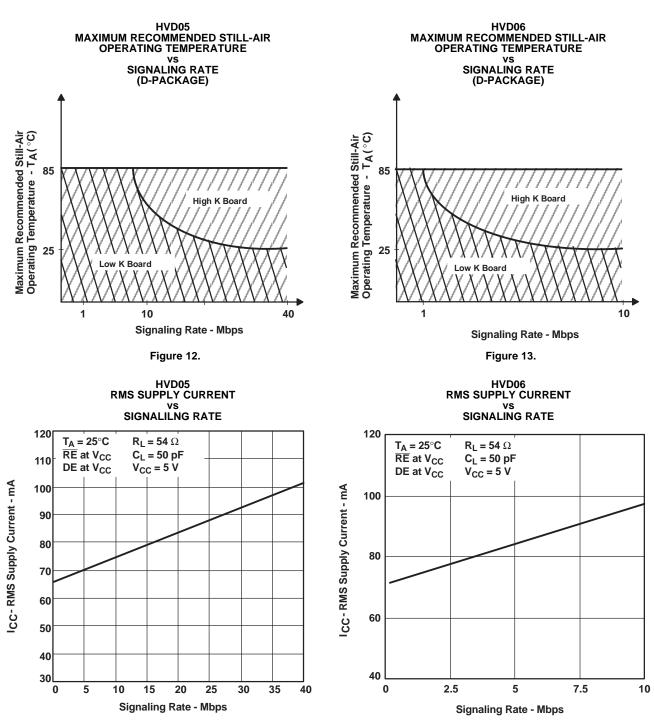
#### DRIVER


| INPUT | ENABLE | OUT | PUTS |
|-------|--------|-----|------|
| D     | DE     | Α   | в    |
| Н     | Н      | Н   | L    |
| L     | Н      | L   | Н    |
| Х     | L      | Z   | Z    |
| Open  | Н      | Н   | L    |
| X     | Open   | Z   | Z    |

## RECEIVER<sup>(1)</sup>

| DIFFERENTIAL INPUTS                | ENABLE | OUTPUT |
|------------------------------------|--------|--------|
| $V_{ID} = V_A - V_B$               | RE     | R      |
| V <sub>ID</sub> ≤ -0.2 V           | L      | L      |
| -0.2 V < V <sub>ID</sub> < -0.01 V | L      | ?      |
| -0.01 V≤ V <sub>ID</sub>           | L      | Н      |
| X                                  | Н      | Z      |
| Open Circuit                       | L      | Н      |
| Short Circuit                      | L      | Н      |
| Х                                  | Open   | Z      |

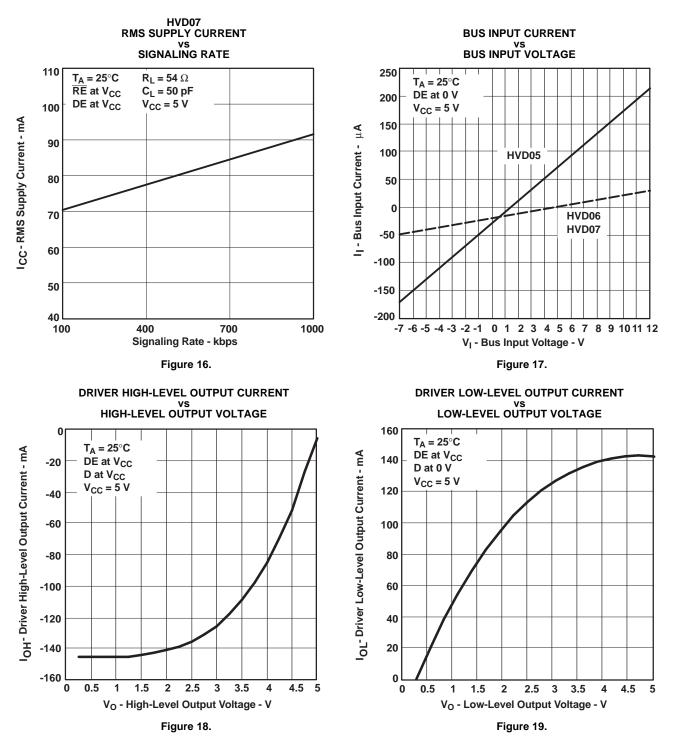
(1) H = high level; L = low level; Z = high impedance; X = irrelevant;
 ? = indeterminate





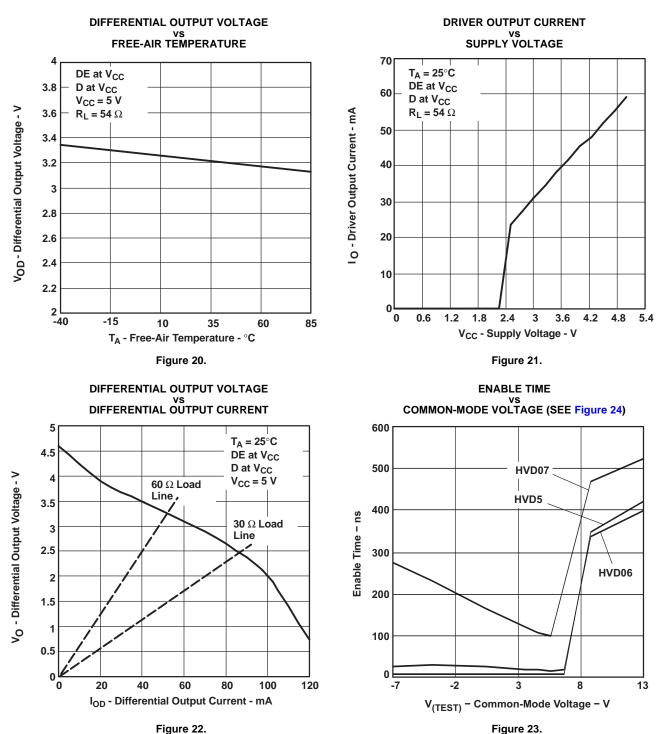

## EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

|           | R1/R2         | R3             |
|-----------|---------------|----------------|
| SN65HVD05 | <b>9 k</b> Ω  | <b>45 k</b> Ω  |
| SN65HVD06 | <b>36 k</b> Ω | <b>180 k</b> Ω |
| SN65HVD07 | <b>36 k</b> Ω | <b>180 k</b> Ω |






### **TYPICAL CHARACTERISTICS**


Figure 14.





## **TYPICAL CHARACTERISTICS (continued)**





## **TYPICAL CHARACTERISTICS (continued)**



## **TYPICAL CHARACTERISTICS (continued)**

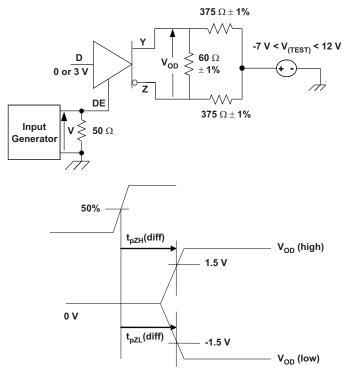
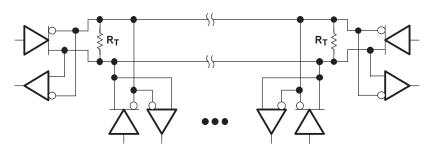



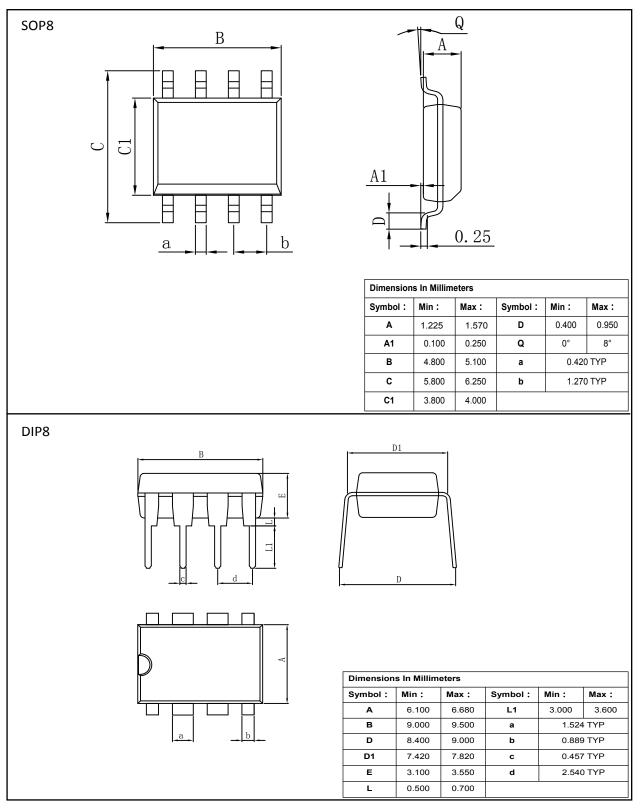

Figure 24. Driver Enable Time From DE to V<sub>OD</sub>

The time  $t_{pZL}(x)$  is the measure from DE to  $V_{OD}(x)$ .  $V_{OD}$  is valid when it is greater than 1.5 V.



### **APPLICATION INFORMATION**




| Device | Number of Devices on Bus |
|--------|--------------------------|
| HVD05  | 64                       |
| HVD06  | 256                      |
| HVD07  | 256                      |

NOTE: The line should be terminated at both ends with its characteristic impedance ( $R_T = Z_O$ ). Stub lengths off the main line should be kept as short as possible.

Figure 25. Typical Application Circuit



## PACKAGE





Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.