Size 5930 (15x7.75mm)

SRC59 Series

Gurrent Shunt Resistors

SRC59 Series Current Shunt Resistors aid precision measurement and high-current applications. A wide range of precision shunts, designed for use with kilowatt-hour meters and other high-current applications where a high level of accuracy is required, is now available from PROSEMI.

Features

- Power rating up to 10 W at $100^{\circ} \mathrm{C}$
- Excellent long term stability
- Extremely low resistance values (down to $0.2 \mathrm{~m} \Omega$)
- Halogen free, lead free and RoHS compliant

Appications

- Power modules
- Frequency converters
- Current sensor for power hybrid sources
- High current for automotive
- Lithium battery protection board

Part Number	Power Rating $\boldsymbol{P}_{\mathbf{1 0 0}}{ }^{\circ} \mathbf{C}$ $\mathbf{(W)}$	Resistance Range $(\mathbf{m} \boldsymbol{\Omega})$	2	TCR $\left(\mathbf{p p m} /{ }^{\circ} \mathbf{C}\right)$	Thickness $(\mathbf{m m})$
SRC59F_A2R0	6	1	± 50	0.94 ± 0.1	Material
SRC59F_A1R0	6	0.5	± 50	1.37 ± 0.1	FeCrAl
SRC59M_A0R50	6	0.3	± 75	1.09 ± 0.1	MnCu
SRC59M_SOR30	7	0.2	± 100	1.45 ± 0.1	MnCu
SRC59M_TOR20	10	± 100	1.93 ± 0.1	MnCu	

[^0]
Size 5930 (15x7.75mm)

Current Shunt Resistors

Dimension

Type	L	W	T	A	p
SRC59F_A2R0	15 ± 0.2	7.75 ± 0.1	0.94 ± 0.1	4.2 ± 0.1	1.0 ± 0.1
SRC59F_A1R0	15 ± 0.2	7.75 ± 0.1	1.37 ± 0.1	4.2 ± 0.1	1.0 ± 0.1
SRC59M_A0R50	15 ± 0.2	7.75 ± 0.1	1.09 ± 0.1	4.2 ± 0.1	1.0 ± 0.1
SRC59M_S0R30	15 ± 0.2	7.75 ± 0.1	1.45 ± 0.1	4.2 ± 0.1	1.0 ± 0.1
SRC59M_T0R20	15 ± 0.2	7.75 ± 0.1	1.93 ± 0.1	4.2 ± 0.1	1.0 ± 0.1
Packaging			Storage Conditions		

- Quantity: 2,000pcs
- Temperature: 22~28 ${ }^{\circ} \mathrm{C}$, Humidity: $40 \sim 75 \%$
- 24 mm wide tape on 330 mm (13 inch) diameter reel-specification EIA Standard 481.

Derating Curve

Size 5930 (15x7.75mm)

Current Shunt Resistors

Soldering Parameters

Wave Soldering: $260^{\circ} \mathrm{C}, 10$ seconds max.

eflow Profile	
Preheat Heat Temperature min (Tsmin) Temperature max(Tsmax) Time (Tsmin to Tsmax) (ts)	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{C} \\ & 60-120 \text { seconds } \end{aligned}$
Average ramp-up rate (Tsmax to Tp)	$3^{\circ} \mathrm{C} /$ second max.
Liquidous temperature (TL) Time at liquidous (tı)	$\begin{aligned} & 217^{\circ} \mathrm{C} \\ & 60-150 \text { seconds } \end{aligned}$
Peak temperature(Tp)	$260+0 /-5^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak Temperature (tp)	10-30 seconds
Average ramp-down rate (Tp to Tsmax)	$6^{\circ} \mathrm{C} /$ second max.
Time $25{ }^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

Performances

Short Time Overload	Loading 5 times rate power 5 sec
Moisture Resistance	The specimens shall be placed in a chamber and subjected to a relative humidity of $90 \sim 98 \%$ percent and a temperature of $25^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 10$ cycles
High Temperature Exposure	The chip (mounted on board) is exposed in the heat chamber $125^{\circ} \mathrm{C}$ for 1000 hrs.
Rapid Change of Temperature	The chip (mounted on board) is exposed, $-55 \pm 3^{\circ} \mathrm{C}(30 \mathrm{~min}) /.+125 \pm 2^{\circ} \mathrm{C}(30 \mathrm{~min}$.$) for 5$ cycles.
Load Life	Apply rated power for 1000 hours with 1.5 hours 0 N and 0.5 hour 0 FF.

[^0]: - Applicable temperature range of $-55^{\circ} \mathrm{C}$ to $+170^{\circ} \mathrm{C}$

 Power rating is guaranteed for use an aluminum substrate (МСРСВ) Part
 Number definition " " of Resistance Tolerance

