Data Sheet

FEATURES

Small signal gain of $\mathbf{1 2 . 5 ~ d B}$ typical from $10 \mathbf{~ M H z}$ to $500 \mathbf{~ M H z}$ Broad operation from 10 MHz to 8000 MHz
OIP3 of $\mathbf{3 4} \mathbf{~ d B m}$ typical from $10 \mathbf{~ M H z}$ to $500 \mathbf{~ M H z}$
Internal amplifier state, output P1dB of 17 dBm typical from 5000 MHz to 8000 MHz
Noise figure of $\mathbf{2 . 8} \mathbf{~ d B}$ typical from $10 \mathbf{~ M H z}$ to $\mathbf{5 0 0} \mathbf{~ M H z}$
Low insertion loss of $\mathbf{2 d B}$ typical for the internal bypass switch state from 10 MHz to 500 MHz
Wide operating temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
RoHS-compliant, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$, 28-terminal LGA
ESD rating of $\pm 750 \mathrm{~V}$ (Class 1B)

APPLICATIONS

Military

Test instrumentation
Communications

GENERAL DESCRIPTION

The ADL8111 is a low noise amplifier (LNA) with a nonreflective bypass switch that provides broadband operation from 10 MHz to 8000 MHz . The ADL8111 provides a low noise figure of 2.8 dB with a high output third-order intercept (OIP3) of 34 dBm simultaneously, which delivers a high dynamic range. The ADL8111 provides a gain of 12.5 dB that is stable over frequency, temperature, power supply, and from device to device.

The integration of an amplifier and two single-pole, quadthrow (SP4T) nonreflective switches allows multiple gain and

Figure 1.
linearity values. The addition of switches also offers high input intercept performance and prevents distortion on the high signal level applications.

The ADL8111 has a high electrostatic discharge (ESD) rating of $\pm 750 \mathrm{~V}$ (Class 1 B) and is fully specified for operation across a wide temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The ADL8111 is offered in a $6 \mathrm{~mm} \times 6 \mathrm{~mm}, 28$-terminal land grid array (LGA) package.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
Thermal Resistance 5
Power Derating Curves 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics. 6
Typical Performance Characteristics 7
External Bypass A State 7
Internal Amplifier State 10
Internal Bypass State 14
External Bypass B State 16
Test Circuits 19
Theory of Operation 20
Signal Path States for Digital Control Inputs. 20
Applications Information 21
Recommended Bias Sequencing 21
Evaluation PCB 22
Evaluation Board Schematic 23
Outline Dimensions 24
Ordering Guide 24

REVISION HISTORY

4/2019—Revision 0: Initial Version

SPECIFICATIONS

Drain bias voltage $\left(V D D _P A\right)=+5 \mathrm{~V}$, quiescent drain supply current $\left(\mathrm{I}_{\mathrm{DQ} _\mathrm{PA}}\right)=70 \mathrm{~mA}$, negative bias voltage $($ VSS_SW $)=-3.3 \mathrm{~V}$, positive bias voltage $($ VDD_SW $)=+3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline OVERALL FUNCTION Frequency Range \& \& 10 \& \& 5000 \& MHz \\
\hline \begin{tabular}{l}
INTERNAL AMPLIFIER STATE \\
Small Signal Gain \\
Gain Flatness \\
Input Return Loss \\
Output Return Loss \\
Radio Frequency (RF) Settling Time \\
Switching Speed \\
Rise Time (\(\mathrm{t}_{\text {RISE }}\)) and Fall Time (\(\mathrm{t}_{\text {FALL }}\)) \\
Turn On Time (ton) and Turn Off Time (toff) \\
Output 1 dB Compression (P 1 dB) \\
Output Third-Order Intercept (OIP3) \\
Noise Figure \\
VDD_PA
\end{tabular} \& \begin{tabular}{l}
\(50 \%\) VA/VB to 0.5 dB margin of final RFOUT \(50 \%\) VA/VB to 0.1 dB margin of final RFOUT \\
10\% to 90\% RFOUT \\
50\% VA/VB to \(90 \% / 10 \%\) RF
\end{tabular} \& 11.2

17

3.0 \& \[
$$
\begin{aligned}
& 12.5 \\
& \pm 0.5 \\
& 24 \\
& 17 \\
& \\
& 170 \\
& 260 \\
& \\
& 40 \\
& 160 \\
& 19.5 \\
& 34 \\
& 2.8 \\
& 5.0 \\
& \hline
\end{aligned}
$$

\] \& 5.5 \& | dB |
| :--- |
| dB |
| dB |
| dB |
| ns |
| ns |
| ns |
| ns |
| dBm |
| dBm |
| dB |
| V |

\hline | INTERNAL BYPASS SWITCH STATE |
| :--- |
| Insertion Loss |
| RF Settling Time |
| Switching Speed $\mathrm{t}_{\text {RISE/ }} / \mathrm{t}_{\text {Fall }}$ ton/toff |
| Input Third-Order Intercept (IIP3) 0.5 dB Compression (P0.5dB) |
| P1dB |
| Return Loss On State Return Loss Off State VDD_SW VSS_SW | \& | 50% VA/VB to 0.5 dB margin of final RFOUT 50% VA/VB to 0.1 dB margin of final RFOUT |
| :--- |
| 10\% to 90\% RFOUT |
| 50\% VA/VB to $90 \% / 10 \%$ RF | \& \[

$$
\begin{aligned}
& 3.0 \\
& -3.6 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 175 \\
& 260 \\
& 60 \\
& 160 \\
& 58 \\
& 34 \\
& 35 \\
& 18 \\
& 30 \\
& 3.3 \\
& -3.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.6 \\
& -3.0
\end{aligned}
$$

\] \& | dB |
| :--- |
| ns |
| ns |
| ns |
| ns |
| dBm |
| dBm |
| dBm |
| dB |
| dB |
| V |
| V |

\hline ```
EXTERNAL BYPASS A AND EXTERNAL BYPASS B STATES
Insertion Loss
RF Settling Time
Switching Speed
trISE/t fall
ton/tofF
IIP3
P0.5dB
P1dB
Return Loss On State
Return Loss Off State
VDD_SW
VSS_SW

``` & \begin{tabular}{l}
\(50 \%\) VA/VB to 0.5 dB margin of final RFOUT \(50 \%\) VA/VB to 0.1 dB margin of final RFOUT \\
10\% to 90\% RFOUT \\
50\% VA/VB to 90\%/10\% RF
\end{tabular} & \[
\begin{aligned}
& 3.0 \\
& -3.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 180 \\
& 230 \\
& 70 \\
& 70 \\
& 175 \\
& 59 \\
& 35.5 \\
& 36 \\
& 22 \\
& 25 \\
& 3.3 \\
& -3.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.6 \\
& -3.0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
dB \\
ns \\
ns \\
ns \\
ns \\
dBm \\
dBm \\
dBm \\
dB \\
dB \\
V \\
V
\end{tabular} \\
\hline
\end{tabular}

\section*{ADL8111}

VDD_PA \(=+5 \mathrm{~V}, \mathrm{IDq}_{\mathrm{PA}}=70 \mathrm{~mA}, \mathrm{VSS} \_\mathrm{SW}=-3.3 \mathrm{~V}, \mathrm{VDD} \mathrm{\_SW}=+3.3 \mathrm{~V}\), and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted.
Table 2.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Test Conditions/Comments & Min & Typ & Max & Unit \\
\hline OVERALL FUNCTION Frequency Range & & 5000 & & 8000 & MHz \\
\hline \begin{tabular}{l}
INTERNAL AMPLIFIER STATE \\
Small Signal Gain \\
Gain Flatness \\
Input Return Loss \\
Output Return Loss \\
P1dB \\
OIP3 \\
Noise Figure \\
VDD_PA
\end{tabular} & & \[
10.6
\]
\[
3.0
\] & \[
\begin{aligned}
& 11.5 \\
& \pm 1 \\
& 14 \\
& 16 \\
& 17 \\
& 32 \\
& 4.5 \\
& 5.0
\end{aligned}
\] & 5.5 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB \\
V
\end{tabular} \\
\hline \begin{tabular}{l}
INTERNAL BYPASS SWITCH STATE \\
Insertion Loss \\
IIP3 \({ }^{1}\) \\
P0.5dB \\
Return Loss On State \\
Return Loss Off State \\
VDD_SW \\
VSS_SW
\end{tabular} & & \[
\begin{aligned}
& 3.0 \\
& -3.6
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 58 \\
& 34 \\
& 18 \\
& 22 \\
& 3.3 \\
& -3.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.6 \\
& -3.0
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dBm \\
dBm \\
dB \\
dB \\
V \\
V
\end{tabular} \\
\hline ```
EXTERNAL BYPASS A AND EXTERNAL BYPASS B STATES2
    Insertion Loss
    IIP3
    P0.5dB
    Return Loss On State
    Return Loss Off State
    VDD_SW
    VSS_SW
``` & & \[
\begin{aligned}
& 3.0 \\
& -3.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 57.5 \\
& 34.5 \\
& 17 \\
& 20 \\
& 3.3 \\
& -3.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.6 \\
& -3.0
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dBm \\
dBm \\
dB \\
dB \\
V \\
V
\end{tabular} \\
\hline
\end{tabular}
\({ }^{1}\) IIP3 and compression data for the internal bypass and the External Bypass B states is the same as the External Bypass A state data.
\({ }^{2}\) External Bypass A and External Bypass B were tested with an external \(50 \Omega\) transmission line on the evaluation board.

Table 3. Total Supply Current by \(\mathrm{V}_{\mathrm{DD}}\)
\begin{tabular}{l|l|l|l}
\hline Parameter & Min & Typ & Max \\
\hline Supply Current & & & \\
VDD_PA \(=5 \mathrm{~V}\) & & & mA \\
VDD_SW \(=+3.3 \mathrm{~V}\) & 30 & \(\mu \mathrm{~A}\) \\
VSS_SW \(=-3.3 \mathrm{~V}\) & & 30 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Table 4. Logic Control Voltage
\begin{tabular}{l|ll|l|l}
\hline Digital Control Inputs & Min \(\quad\) Typ & Max & Unit & Current \\
\hline Low & 0 & 0.8 & \(V\) & \(<1 \mu\) A typical \\
High & 1.4 & & VDD_SW +0.3 & V \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}

Table 5.
\begin{tabular}{|c|c|}
\hline Parameter & Rating \\
\hline VDD_PA & +7V dc \\
\hline VDD_SW Range & -0.3 V to +3.7 V \\
\hline VSS_SW Range & -3.7 V to +0.3 V \\
\hline Control Voltage (VA, VB) Range & \[
\begin{aligned}
& -0.3 \mathrm{~V} \text { to } \mathrm{VDD}+ \\
& 0.3 \mathrm{~V}
\end{aligned}
\] \\
\hline RF Input Power (RFIN) - Internal Amplifier State & 20 dBm \\
\hline RFIN - Internal Bypass, External Bypass A, External Bypass B & 31 dBm \\
\hline RFIN (IN_A, OUT_A, IN_B, and OUT_B) Termination Path (VDD_SW, VA, VB \(=3.3 \mathrm{~V}\), VSS \(=-3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\), and Frequency \(=\) 2 GHz) & 28 dBm \\
\hline Hot Switch Power Level (IN_A, OUT_A, IN_B, and OUT_B), VDD_SW \(=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\), and Frequency \(=2 \mathrm{GHz}\) & 30 dBm \\
\hline Hot Switch Power Level (Internal Amplifier State) & 20 dBm \\
\hline Continuous Power Dissipation, PDISS (\(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\), Derate \(6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) Above \(85^{\circ} \mathrm{C}\)) & 0.61 W \\
\hline Channel Temperature & \(175^{\circ} \mathrm{C}\) \\
\hline Maximum Peak Reflow Temperature (Moisture Sensitivity Level 3, MSL3) \({ }^{1}\) & \(260^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline ESD Sensitivity (Human Body Model) & \[
\begin{aligned}
& \text { Class 1B } \\
& (\text { Passed } \pm 750 \mathrm{~V})
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1}\) See the Ordering Guide section for additional information.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

\section*{THERMAL RESISTANCE}

Thermal performance is directly linked to the printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
\(\theta_{\text {JC }}\) is the junction to case thermal resistance.
Table 6. Thermal Resistance
\begin{tabular}{l|l|l}
\hline Package Type & \(\boldsymbol{\theta}_{\mathbf{\prime}}\) & Unit \\
\hline CC-28-3 \({ }^{1}\) & 148 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Jcc was determined by simulation under the following conditions: the heat transfer is due solely to thermal conduction from the channel through the ground paddle to the PCB, and the ground paddle is held constant at an \(85^{\circ} \mathrm{C}\) operating temperature.
}

\section*{POWER DERATING CURVES}

Figure 2. Power Derating for RFIN Port

Figure 3. Power Derating for Terminated Path

Figure 4. Power Derating for Hot Switching Power

\section*{ESD CAUTION}

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

\section*{PIN CONFIGURATION AND FUNCTION DESCRIPTIONS}

NOTES
1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO RF AND DC GROUND.

Figure 5. Pin Configuration-Top View Not to Scale
Table 7. Pin Function Descriptions
\begin{tabular}{|c|c|c|}
\hline Pin No. & Mnemonic & Description \\
\hline 1 & VDD_PA & Drain Bias Voltage. See Table 2. \\
\hline 2 & VBIAS & Current Mirror Bias Resistor Pin. Use this pin to set the current to the internal resistor by the external resistor. See Figure 9 for the interface schematic. \\
\hline \[
\begin{aligned}
& 3,5,8,10 \text { to } 12,14,17,19 \text { to } \\
& 22,24 \text { to } 26,28
\end{aligned}
\] & GND & RF and DC Ground. See Figure 6 for the interface schematic. \\
\hline 4 & RFIN & RF Input. These pins are dc-coupled and matched to \(50 \Omega\). A dc blocking capacitor is required if the RF line potential is not equal to 0 Vdc . \\
\hline 6,7 & VA, VB & Control Input. See Table 2, Table 4, and Table 5. See Figure 8 and Figure 7 for the interface schematics. \\
\hline 9,13 & \[
\begin{aligned}
& \text { OUT_B, } \\
& \text { IN_B }
\end{aligned}
\] & These pins are dc-coupled and matched to \(50 \Omega\). A dc blocking capacitor is required if the RF line potential is not equal to 0 Vdc . \\
\hline 15 & VSS_SW & Negative Bias Voltage. See Table 2. \\
\hline 16 & VDD_SW & Positive Bias Voltage. See Table 2. \\
\hline 18 & RFOUT & RF Output. This pin is dc-coupled and matched to \(50 \Omega\). A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc . \\
\hline 23, 27 & IN_A, OUT_A & These pins are dc-coupled and matched to \(50 \Omega\). A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc. \\
\hline & EPAD & \\
\hline
\end{tabular}

\section*{INTERFACE SCHEMATICS}

Figure 6. GND Interface Schematic

Figure 7. VB Interface Schematic

Figure 8. VA Interface Schematic

Figure 9. VBIAS Interface Schematic

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

\section*{EXTERNAL BYPASS A STATE}

Figure 10. Broadband Insertion and Return Loss vs. Frequency, State \(=\) External Bypass A, Path \(=\) RFIN to OUT_A (Refer to Figure 75 for the Test Circuit)

Figure 11. Insertion Loss Over Temperature vs. Frequency, State \(=\) External Bypass A, Path \(=\) RFIN to OUT_A (Refer to Figure 75 for the Test Circuit)

Figure 12. Input Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass A, Path \(=\) RFIN to OUT_A (Refer to Figure 75 for the Test Circuit)

Figure 13. Broadband Insertion and Return Loss vs. Frequency, State \(=\) External Bypass A, Path \(=\) IN_A to RFOUT (Refer to Figure 75 for the Test Circuit)

Figure 14. Insertion Loss Over Temperature vs. Frequency,
State \(=\) External Bypass A, Path \(=I N _\)A to RFOUT (Refer to Figure 75 for the Test Circuit)

Figure 15. Input Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass A, Path \(=\) IN_A to RFOUT (Refer to Figure 75 for the Test Circuit)

Figure 16. Input Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass A, Path \(=\) RFIN to OUT_A (Refer to Figure 75 for the Test Circuit)

Figure 17. Off State Return Loss vs. Frequency Over Temperature, State \(=\) External Bypass A, Path = OUT_B (Refer to Figure 75 for the Test Circuit)

Figure 18. Isolation vs. Frequency Over Temperature, State \(=\) External Bypass A (Refer to Figure 75 for the Test Circuit)

Figure 19. Output Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass A, Path \(=\) IN_A to RFOUT (Refer to Figure 75 for the Test Circuit)

Figure 20. Off State Return Loss vs. Frequency Over Temperature, State \(=\) External Bypass \(A\), Path \(=I N _B\) (Refer to Figure 75 for the Test Circuit)

Figure 21. Isolation vs. Frequency Over Temperature, State \(=\) External Bypass A (Refer to Figure 75 for the Test Circuit)

Figure 22. Isolation vs. Frequency Over Temperature, State \(=\) External Bypass A (Refer to Figure 75 for the Test Circuit)

Figure 23. P0.5dB vs. Frequency Over Temperature,
State \(=\) External Bypass A, Path \(=\) RFIN to OUT_A or IN_A to RFOUT (Refer to Figure 75 for the Test Circuit)

Figure 24. IIP3 vs. Frequency Over Temperature, State \(=\) External Bypass A, Path \(=\) RFIN to OUT_A or IN_A to RFOUT (Refer to Figure 75 for the Test Circuit)

Figure 25. P1dB Compression vs. Frequency Over Temperature, State \(=\) External Bypass A, Path \(=\) RFIN to OUT_A or IN_A to RFOUT (Refer to Figure 75 for the Test Circuit)

\section*{INTERNAL AMPLIFIER STATE}

Figure 26. Broadband Gain and Return Loss vs. Frequency (100 MHz to 10 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 27. Gain Over Temperature vs. Frequency (10 MHz to 100 MHz) State = Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 28. Input Return Loss vs. Frequency (10 MHz to 100 MHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 29. Gain vs Frequency Over VDD (100 MHz to 10 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 30. Gain vs. Frequency Over Temperature (100 MHz to 10 GHz) State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 31. Input Return Loss vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 32. Output Return Loss vs. Frequency (10 MHz to 100 MHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 33. Noise Figure vs. Frequency OverTemperature (10 MHz to 100 MHz), State = Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 34. Isolation vs. Frequency Over Temperature, State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 35. Output Return Loss vs. Frequency Over
Temperature (100 MHz to 8 GHz), State = Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 36. Noise Figure vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 37. Isolation vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 38. Isolation vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 39. Reverse Isolation vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 40. OIP3 vs. Frequency Over Temperature (10 MHz to 100 MHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 41. Isolation vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 42. Reverse Isolation vs. Frequency Over Temperature (100 MHz to 8 GHz), State = Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 43. OIP3 vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 44. OIP3 vs. Frequency Over VDD (10 MHz to 100 MHz), State = Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 45. P1dB vs. Frequency Over Temperature (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 46. OIP3 vs. Frequency Over VDD (100 MHz to 8 GHz), State \(=\) Internal Amplifier (Refer to Figure 76 for the Test Circuit)

Figure 47. P1dB vs. Frequency Over VDD (100 MHz to 8 GHz), State = Internal Amplifier (Refer to Figure 76 for the Test Circuit)

\section*{INTERNAL BYPASS STATE}

Figure 48. Broadband Insertion and Return Loss vs. Frequency, State \(=\) Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 49. Input Return Loss Over Temperature vs. Frequency, State = Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 50. Isolation vs. Frequency Over Temperature, State \(=\) Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 51. Insertion Loss Over Temperature vs. Frequency, State \(=\) Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 52. Output Return Loss Over Temperature vs. Frequency, State = Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 53. Isolation vs. Frequency Over Temperature, State \(=\) Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 54. Isolation vs. Frequency Over Temperature, State \(=\) Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 55. P0.5dB vs. Frequency Over Temperature,
State \(=\) Internal Bypass, Path \(=\) RFIN to RFOUT (Refer to Figure 77 for the Test Circuit)

Figure 56. IIP3 vs. Frequency Over Temperature,
State \(=\) Internal Bypass, Path \(=\) RFIN to RFOUT (Refer to Figure 77 for the Test Circuit)

Figure 57. Isolation vs. Frequency Over Temperature, State \(=\) Internal Bypass (Refer to Figure 77 for the Test Circuit)

Figure 58. P1dB vs. Frequency Over Temperature, State \(=\) Internal Bypass, Path \(=\) RFIN to RFOUT (Refer to Figure 77 for the Test Circuit)

\section*{EXTERNAL BYPASS B STATE}

Figure 59. Broadband Insertion and Return Loss vs. Frequency, State \(=\) External Bypass B, Path \(=\) RFIN to OUT_B (Refer to Figure 78 for the Test Circuit)

Figure 60. Insertion Loss Over Temperature vs. Frequency, State \(=\) External Bypass B, Path \(=\) RFIN to OUT_B (Refer to Figure 78 for the Test Circuit)

Figure 61. Input Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass B, Path \(=\) RFIN to OUT_B (Refer to Figure 78 for the Test Circuit)

Figure 62. Broadband Insertion and Return Loss vs. Frequency, State \(=\) External Bypass B, Path \(=I N _B\) to RFOUT (Refer to Figure 78 for the Test Circuit)

Figure 63. Insertion Loss Over Temperature vs. Frequency,
State \(=\) External Bypass B, Path \(=I N _B\) to RFOUT (Refer to Figure 78 for the Test Circuit)

Figure 64. Input Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass B, Path \(=I N _B\) to RFOUT (Refer to Figure 78 for the Test Circuit)

Figure 65. Output Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass B, Path \(=\) RFIN to OUT_B (Refer to Figure 78 for the Test Circuit)

Figure 66. Off State Return Loss vs. Frequency Over Temperature, State \(=\) External Bypass B, Path \(=I N _A\) (Refer to Figure 78 for the Test Circuit)

Figure 67. Isolation vs. Frequency Over Temperature, State \(=\) External Bypass B (Refer to Figure 78 for the Test Circuit)

Figure 68. Output Return Loss Over Temperature vs. Frequency, State \(=\) External Bypass B, Path \(=I N _B\) to RFOUT (Refer to Figure 78 for the Test Circuit)

Figure 69. Off State Return Loss vs. Frequency Over Temperature, State \(=\) External Bypass B, Path \(=\) OUT_A (Refer to Figure 78 for the Test Circuit)

Figure 70. Isolation vs. Frequency Over Temperature, State \(=\) External Bypass B (Refer to Figure 78 for the Test Circuit)

Figure 71. Isolation vs. Frequency Over Temperature, State \(=\) External Bypass B (Refer to Figure 78 for the Test Circuit)

Figure 72. P0.5dB vs. Frequency Over Temperature, State \(=\) External Bypass B, Path \(=\) RFIN to OUT_B or IN_B to RFOUT (Refer to Figure 78 for the Test Circuit)

Figure 73. IIP3 vs. Frequency Over Temperature,
State \(=\) External Bypass B, Path \(=\) RFIN to OUT_B or IN_B to RFOUT (Refer to Figure 78 for the Test Circuit)

Figure 74. P0.5dB vs. Frequency Over Temperature, State \(=\) External Bypass B, Path \(=\) RFIN to OUT_B or IN_B to RFOUT (Refer to Figure 78 for the Test Circuit)

TEST CIRCUITS

Figure 75. External Bypass A State

Figure 76. Internal Amplifier State

Figure 77. Internal Bypass State

Figure 78. External Bypass B State

\section*{THEORY OF OPERATION}

The ADL8111 integrates an amplifier with two switching networks located at the RF input and output. The internal amplifier uses a gallium arsenide (GaAs) LNA die from the HMC8411. The switching network employs robust silicon-oninsulator (SOI) technology for fast switching and a short settling time. This integrated solution has four different signal path states available: an internal amplifier, an internal bypass, External Bypass A, and External Bypass B. Signal path states are controlled through the digital pins, VA and VB, using 1.4 V high and 0 V low logic (see Figure 79 to Figure 82). The internal amplifier is biased up by applying 5 V to VDD_PA, and the internal switches are biased up by applying +3.3 V and -3.3 V to VDD_SW and VSS_SW, respectively. DC bias to the switches is independent of the LNA. Turning off bias to VDD_PA to the LNA provides better isolation between RF ports.

\section*{SIGNAL PATH STATES FOR DIGITAL CONTROL INPUTS}

Figure 79. External Bypass \(A, V A=0 V\) and \(V B=0 V\)

Figure 80. Internal Amplifier, \(V A=0 \mathrm{~V}\) and \(V B=3.3 \mathrm{~V}\)

Figure 81. Internal Bypass, \(V A=3.3 \mathrm{~V}\) and \(V B=0 \mathrm{~V}\)

Figure 82. External Bypass \(B, V A=3.3 V\) and \(V B=3.3 \mathrm{~V}\)

Table 8. Truth Table
\begin{tabular}{l|l|l|l}
\hline \multirow{2}{*}{ State Name } & \multicolumn{2}{|c|}{ Digital Control Inputs } & \multirow{2}{*}{ Signal Path State } \\
\cline { 2 - 3 } & VA & VB & RFIN to OUT_A, IN_A to RFOUT \\
External Bypass A & Low & Low & RFIN to RFOUT through amplifier path \\
Internal Amplifier & Low & High & RFIN to RFOUT through bypass path \\
Internal Bypass & High & Low & RFIN to OUT_B, IN_B to RFOUT \\
External Bypass B & High & High & \\
\hline
\end{tabular}

\section*{ADL8111}

\section*{APPLICATIONS INFORMATION}

The basic connections for operating the ADL8111 are shown in Figure 83. A 5 V dc bias is supplied to the amplifier on VDD_PA, +3.3 V dc bias supply to VDD_SW and -3.3 V dc bias supply to VSS_SW.
VA and VB are digital inputs set path states shown in Table 7. High logic state is set at 1.4 V and low logic state is set at 0 V .

The LNA within the ADL8111 operates in self-biased mode where the VBIAS pin is connected to a \(560 \Omega\) external resistor to achieve a 70 mA supply current. Refer to Table 9 for the recommended resistor values to achieve different \(\mathrm{I}_{\mathrm{DQ}}\) currents.

\section*{RECOMMENDED BIAS SEQUENCING}

\section*{During Power-Up}

The recommended bias sequence during power-up follows:
1. Set VDD_SW \(=3.3 \mathrm{~V}\).
2. Set VSS_SW \(=-3.3 \mathrm{~V}\).
3. Set VDD_PA \(=5 \mathrm{~V}\).
4. Apply the RF signal.

\section*{During Power-Down}

The recommended bias sequence during power-down follows:
1. Turn off the RF signal.
2. Set VDD_PA \(=0 \mathrm{~V}\).
3. Set VSS_SW \(=0 \mathrm{~V}\).
4. Set VDD_SW \(=0 \mathrm{~V}\).

The bias conditions, \(V D_{D}\) PA \(=5 \mathrm{~V}\) at \(\mathrm{I}_{\mathrm{DQ}}=70 \mathrm{~mA}\), is the recommended operating point to achieve optimum performance. The data used in this data sheet was taken with the recommended bias condition. Using the HMC8411 with different bias conditions can provide different performance than what is shown in the Typical Performance Characteristics section.

Table 9. Recommended Bias Resistor Values at VDD_PA \(=5 \mathrm{~V}\)
\begin{tabular}{l|l}
\hline RBIAS \(\mathbf{(\Omega)}\) & IDQ \((\mathbf{m A})\) \\
\hline 226 & 85 \\
560 & 70 \\
1.1 k & 55 \\
\hline
\end{tabular}

\section*{EVALUATION PCB}

The ADL8111-EVALZ is the evaluation board for the ADL8111 with fully populated components as shown in Figure 83 and its schematic shown in Figure 84. The board is fabricated with four layers using Rogers 4350. Signal lines have characteristic impedance of \(50 \Omega\). Package ground leads and the exposed
paddle are soldered to the ground plane. Adequate amounts of via holes connect the top and bottom ground planes. The evaluation board is available from Analog Devices, Inc., upon request. Gerber files can be found on the ADL8111 product webpage.

Figure 83. ADL8111-EVALZ Evaluation Board PCB

\section*{EVALUATION BOARD SCHEMATIC}

Figure 84. ADL8111-EVALZ Evaluation Board Schematic

Table 10. Bill of Material for Evaluation PCB ADL8111-EVALZ
\begin{tabular}{l|l}
\hline Item & Description \\
\hline \(\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 7, \mathrm{~J} 8, \mathrm{~J} 9, \mathrm{~J} 10\) & SRI SMA RF connectors \\
\(\mathrm{J} 3, \mathrm{~J} 4\) & DC header pins \\
U 1 & ADL8111 \\
C 1 & \(10 \mathrm{pF}, 5 \%\) tolerance, 0201, ceramic capacitor \\
R1 & \(560 \Omega, 1 / 16 \mathrm{~W}, 0402\), thick film resistor \\
\hline
\end{tabular}

\section*{ADL8111}

\section*{OUTLINE DIMENSIONS}

Figure 85. 28-Terminal Land Grid Array [LGA]
(CC-28-3)
Dimensions shown in millimeters

\section*{ORDERING GUIDE}
\begin{tabular}{l|l|l|l|l}
\hline Model \(^{1}\) & Temperature Range & MSL Rating \({ }^{\mathbf{2}}\) & Package Description & Package Option \\
\hline ADL8111ACCZN & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & MSL3 & 28 -Terminal Land Grid Array \([\mathrm{LGA}]\) & CC-28-3 \\
ADL8111ACCZN-R7 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & MSL3 & 28 -Terminal Land Grid Array \([\mathrm{LGA}]\) & CC-28-3 \\
ADL8111-EVALZ & & & Evaluation Board & \\
\hline
\end{tabular}
\({ }^{1}\) All models are RoHS compliant parts.
\({ }^{2}\) See the Absolute Maximum Ratings section for additional information.```

