

Description

The P1405A over-voltage protection device features an ultra-low $30m\Omega$ (typical) on-resistance high current integrated N-MOSFET which actively protects low-voltage systems from voltage supply faults up to +32VDC. An input voltage exceeding the over-voltage threshold will cause the internal MOSFET to turn off, preventing excessive voltage from damaging downstream devices. P1405A has thermal protection at 140° C

The P1405A is available in a RoHS and Green compliant DFN2x2-6L package.

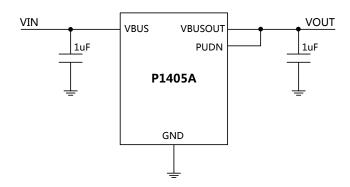
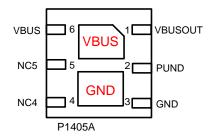



Figure 1. Typical Application

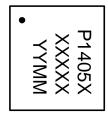


Figure 2. Pin order (Bottom view) and Marking (Top view)

Feature

- Wide Input voltage range: 3.0-32V
- Ultra-low 30mohm On-resistance.
- Fixed OVP Threshold:6.0V
- Fast turn-off response time: 50ns
- Soft-start function to avoid in-rush current
- -40-85°C operation temperature
- DFN2x2-6L

Application

- Cellular Phones, Smart Phones, PDAs
- > Tablet, Portable Media Players
- Gaming Device, Digital Cameras

Pin Definitions

Pin#	PIN Name	Description
1	VBUSOUT	Output voltage.
2	PUND	Pull down output voltage to ground when input voltage is higher than OVP threshold voltage.
3	GND	Ground.
4	NC4	Not connected.
5	NC5	Not connected.
6	VBUS	Input voltage.

Block Diagram

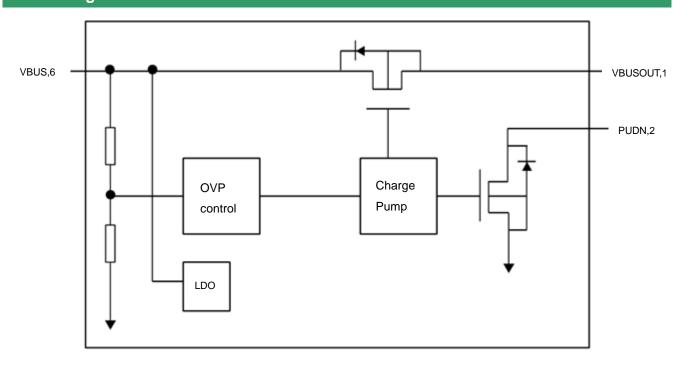


Figure 3. IC Block Diagram

Absolute maximum rating

Parameter(Note1)	Symbol	Value	Units	
VBUS voltage range	V _{BUS}	-0.3 to 32	V	
VBUSOUT voltage range	V _{BUSOUT}	-0.3 to 7	V	
PUDN voltage range	V _{PUDN}	-0.3 to 7	V	
AVDD voltage range	V_{AVDD}	-0.3 to 7	V	
Switch I/O Continuous Current	I _{IN}	I _{IN} 3		
Junction temperature	TJ	150	$^{\circ}\!\mathrm{C}$	
Lead temperature(Soldering,10s)	T∟	260	$^{\circ}$ C	
Storage temperature	T _{STG}	-55 to 150	$^{\circ}$ C	
ESD Ratings	HBM (Except VBUSOUT PIN)	3000	V	
	CDM	500	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Value	Units	
VBUS input voltage range	V _{BUS}	3.0 to 32,typical=5	V	
Operating ambient temperature	T _A	-40 to 85	°C	
Thermal Resistance	$R_{\theta JA}$	67.5	°C/W	

Note 2: Junction to Ambient thermal resistance is highly dependent on PCB layout. Values are based on thermal properties of the device when soldered to an EV board.

Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units				
Basic Operation										
Quiescent Supply Current	I _{DDQ1}	V _{BUS} =5V,No load		120		uA				
Quiescent Supply Guirent	I _{DDQ2}	V _{BUS} =30V,No load		190		uA				
UVLO Threshold Voltage	V_{UVLO}	V _{BUS} Rising		2.4	3.2	V				
Start-up Delay Time	T _{START_DLY}	V _{BUS} =0->5V to Output ON		18		ms				
Main Switch ON-Resistance	R _{ON}	V _{BUS} =5V,I _{OUT} =1A		30	40	mΩ				
Over-Voltage Protection										
VBUS OVP Threshold	V _{OVP}	V _{BUS} Rising	5.85	6.0	6.15	V				
OVP Response Time	t _{OVP}	VIN > V _{OVP} to VOUT stop rising		50		ns				
OVP Recovery Time	t _{R_OVP}	VIN < V _{OVP} to VOUT start rising		18		ms				
Output discharge resistance	R _{DCHG}	VIN > V _{OVP}		400		Ω				
Thermal Protection										
Over-Temperature Protection Threshold	T _{SD}			140		°C				
Over-Temperature Protection Hysteresis	T _{HYS}			20		°				

Typical Characteristics

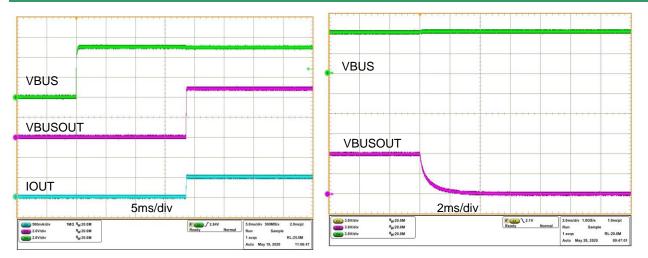


Figure 4. Start-up waveform(Rload=10Ω)

Figure 5. OVP response

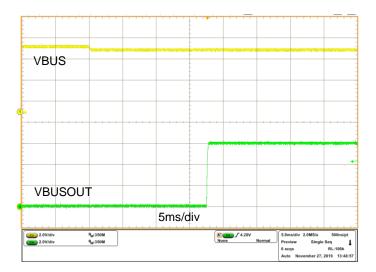
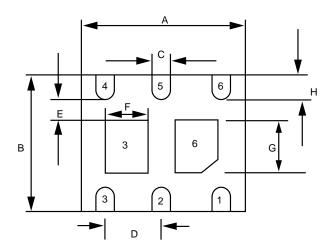
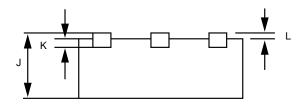
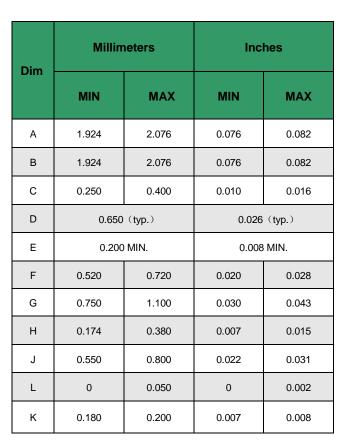
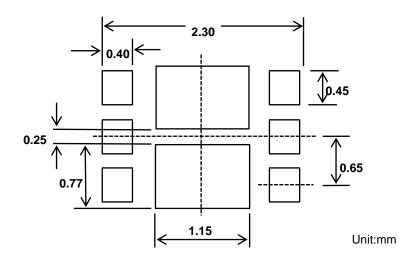




Figure 6. OVP recovery waveform


Product dimension (DFN2x2-6L)



Bottom view

Side view

PCB Layout Guide

IMPORTANT NOTICE

Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.