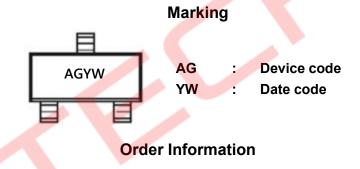

P-Channel Enhancement Mode Field Effect Transistor


Description

The ATM3407PSA uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as -4.5V. This device is suitable for use as a load switch or in PWM applications. Standard Product ATM3407PSA is Pbfree.

Feature

- ◆ V_{DS} (V) = -30V
- \bullet I_D = -3.7 A (V_{GS} = -10V)
- ightharpoonup R_{DS(ON)} < 60m Ω (V_{GS} = -10V)
- ightharpoonup R_{DS(ON)} < 80m Ω (V_{GS} = -4.5V)

Device	Package	Shipping		
ATM3407PSA	SOT-23	3000/Tape&Reel		

Dated:10/2019

Rev: 1.0

Absolute Maximum Ratings (T _A =25°C, unless otherwise noted)									
Parameter		Symbol	Maximum		Units				
Drain-Source Voltage		V _{DS}	-30		V				
Gate-Source Voltage		V_{GS}	±20		V				
Continuous Drain Current NOET 1	T _A =25°C	I _D	-3.7						
	T _A =70°C		-3	.0	A				
Pulsed Drain Current NOET 2		I _{DM}	-15		А				
Power Dissipation NOET 1	T _A =25°C	P _D	1.0						
	T _A =70°C		0.65		W				
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150		°C				
Thermal Characteristics									
Parameter		Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient NOET 1	t≤ 10s	R _{θJA}	105	125	°C/W				
Maximum Junction-to-Ambient NOET 1	Steady-State		122	145	°C/W				
Maximum Junction-to-Lead NOET 3	Steady-State	$R_{\theta JL}$	65	80	°C/W				

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =-250μA, V _{GS} =0V	-30			V
Zero Gate Voltage Drain Current	loss	V _{DS} =-24V, V _{GS} =0V			-1	μA
Gate-Body leakage current	Igss	V _{DS} =0V, V _{GS} =±20V			±100	nA
Gate Threshold Voltage	V _{GS(th)}	VDS=VGS, ID=-250µA	-1.0	-1.5	-2.0	V
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-3.7A		40	50	mΩ
	1 120(014)	V _{GS} =-4.5V, I _D =-3.0A		60	80	mΩ
Forward Transconductance	g FS	V _{DS} =-5.0V, I _D =-3.7A		6.7		S
Diode Forward Voltage	V _{SD}	I _S =-1.0A,V _{GS} =0V		-0.8	-1.2	V
Dynamic Characteristics						
Input Capacitance	C _{iss}	V _{GS} =0V, V _{DS} =-15V, f=1MHz		800		pF
Output Capacitance	C _{oss}			88		pF
Reverse Transfer Capacitance	C _{rss}			70		pF
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, f=1MHz		6.0		Ω
Switching Characteristics		7				
Total Gate Charge	Q _{gtot}	V _{GS} =-10V, V _{DS} =-10V,		15.0		nC
Gate Source Charge	Q _{gs}			2.9		nC
Gate Drain Charge	Q_{gd}	_ ID=-0.774		1.7		nC
Turn-On Delay Time	td(on)			27		ns
Turn-On Rise Time	t _r	V_{GS} =-10V, V_{DS} =-15V, R_L =4 Ω , R_{GEN} =6 Ω		18		ns
Turn-Off Delay Time	td(off)			77		ns
Turn-Off Fall Time	t _f			13		ns

Note:

- The value of R_{θJA} is measured with the device mounted on 1in ² FR-4 board with 2oz. Copper, in a still air environment withT_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.
- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The R_{0,JA} is the sum of the thermal impedence from junction to lead R _{0,JL} and lead to ambient.
- 4. The static characteristics in Figures 1 to 6 are obtained using 80 μs pulses, duty cycle 0.5% max.
- 5. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25$ °C. The SOA curve provides a single pulserating.

Rev: 1.0

Dated:10/2019

RATINGS AND CHARACTERISTIC CURVES

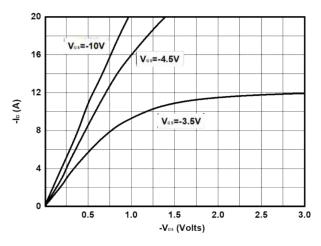


Fig 1: On-Region Characteristics

Figure 2: Transfer Characteristics

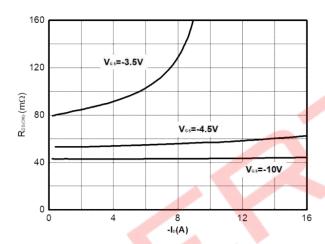


Figure 3: On-Resistance vs. Drain Current and **Gate Voltage**

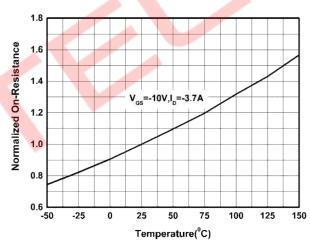


Figure 4: On-Resistance vs. Junction **Temperature**

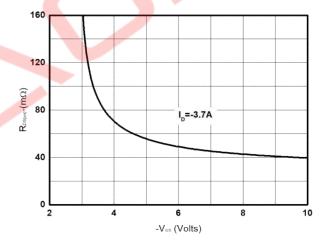


Figure 5: On-Resistance vs Gate-Source

Figure 6: Body-Diode Characteristics

Dated:10/2019

Rev: 1.0

3/5

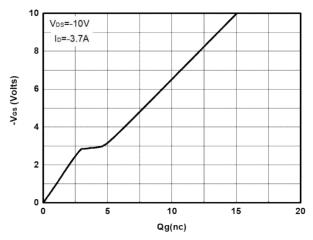


Figure 7: Gate-Charge Characteristics

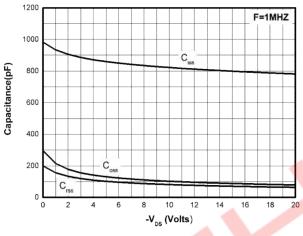


Figure 8: Capacitance Characteristics

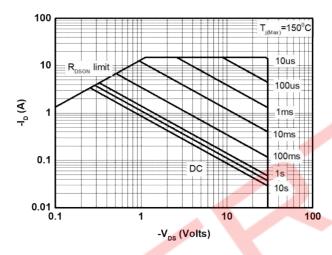


Figure 9: Maximum Forward Biased Safe
Operating Area (Note 5)

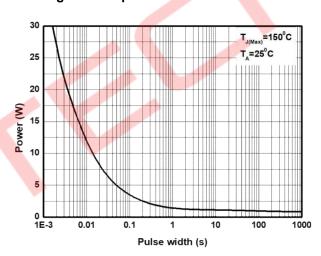


Figure 10: Single Pulse Power Rating
Junction-to-Ambient (Note 5)

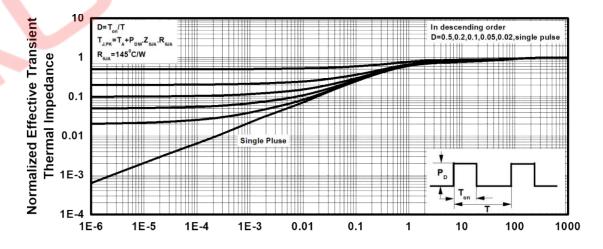
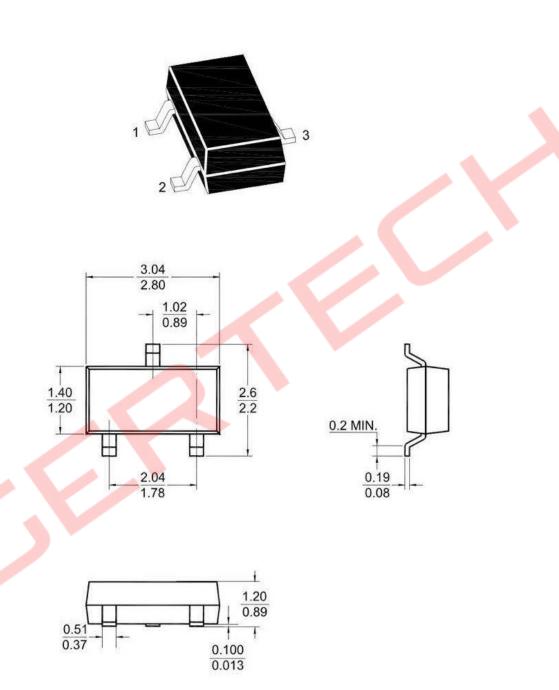


Figure 11: Normalized Maximum Transient Thermal Impedance



Dated:10/2019

Rev: 1.0

Package Outline Dimension (Units: mm)

SOT-23

