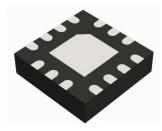
WS7808QM-14/TR

0.1GHz–3GHz SP8T Diversity Antenna Switch with MIPI RFFE Interface

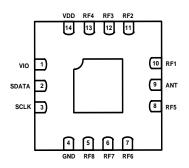
Descriptions

The WS7808QM-14/TR is a single-pole, eight-throw (SP8T) antenna switch with a Mobile Industry Processor Interface (MIPI). Using advanced switching technologies, the WS7808QM-14/TR maintains low insertion loss and high isolation for receive switching path. The high linearity performance and low insertion loss achieved by the WS7808QM-14/TR makes it an ideal choice for WCDMA and LTE applications.

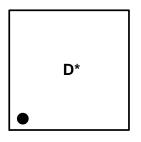

The WS7808QM-14/TR is manufactured in a compact 2.0x2.0x0.55mm, 14-pin surface mount Quad Flat No-Lead (QFN) package.

Features

- Small, low profile package 2.0mm x 2.0mm x 0.55mm
- Working frequency up to 3GHz
- Very low insertion loss
- Excellent isolation performance
- Low power consumption
- Exceptional linearity performance for 3G/4G application
- Very good ESD performance


Applications

- Cell phones
- Tablets
- Other RF front-end modules



http://omnivision-group.com

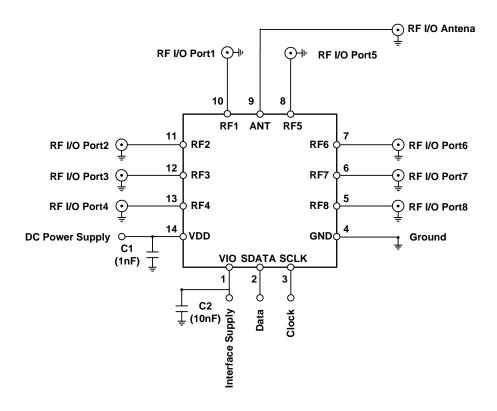
QFN 2.0x2.0-14L (Bottom view)

Pin configuration (Top view)

D= Device code * = Month code (A~Z) Marking (Top view)

Order information

Device	Package	Shipping
WS7808QM-14/TR	QFN 2.0x2.0-14L	3000/Reel &Tape



Pin information

in	Function	Description	Transparent top view
1	VIO	MIPI Interface voltage	
	SDATA	Data input/output	
	SCLK	Clock signal	
	GND	Ground	VDD RF4 RF3 RF2
	RF8	RF I/O path 8	14 13 12 11
6	RF7	RF I/O path 7	
7	RF6	RF I/O path 6	
8	RF5	RF I/O path 5	SDATA 2 9 A SCLK 3 8 F
)	ANT	Antenna input/output	
)	RF1	RF I/O path 1	4 5 6 7
	RF2	RF I/O path 2	GND RF8 RF7 RF6
2	RF3	RF I/O path 3	
3	RF4	RF I/O path 4	
4	VDD	VDD	

Note 1: Bottom ground paddles must be connected to ground.

Application information

WS7808QM-14/TR Evaluation Board Schematic

Note 2: filter capacitor is needed on VDD and VIO respectively

Recommended operating conditions

Parameters	Conditions	Spec	ons	Unit	
		Min.	Тур	Max.	
ESD Rating					
ESD All Pins	HBM, JESD22-A114	-1000		+1000	V
	CDM	-500		+500	V
Power Supply					
Power Supply Voltage	Operating Voltage	2.5	2.8	3.6	V
Power Supply Current	VDD≤3.0V		29	44	μA
Interface supply voltage level		1.65	1.8	1.95	V
Control Voltage			•		
SCLK port voltage		0.8 x VIO		VIO	V
SDATA port voltage		0		0.2 x VIO	V
RF Impedance					
RF Port Input and Output Impedance			50		Ω
	50% of final control voltage				
Turn-On Switching Time	to 90% of final RF power,		5		μs
	switching between RF ports				

Absolute maximum ratings

Maximum ratings are absolute ratings, exceeding only one of these values may cause irreversible damage to the integrated circuit.

Items	Value	Unit
VDD Voltage	-0.3 to +4.0	V
SDATA, SCLK	-0.3 to +2.0	V
Maximum Input Power	Value	Unit
Momentary, infrequent occurrence, 50 ohms	+29	dBm
Momentary, infrequent occurrence, 6:1	+27	dBm
Continuous Operation, 50 ohms	+28	dBm
Continuous Operation, 6:1	+26	dBm
Operation Temperature	-40 to +85	°C
Storage Temperature	-65 to +150	°C
MSL	3	
Reflow Times	3	

Characteristics (RF spec)

Nominal test condition unless otherwise stated. All unused ports are 50Ω terminated. VDD=2.8V, Temp=+25°C, P_{IN}=0dBm.

Parameters	Conditions	Spe	cificati	ions	Unit	
Parameters	Conditions	Min.	Тур.	Max.	Jint	
Insertion Loss	0.1GHz to 1.0GHz		0.40	0.55		
	1.0GHz to 2.0GHz		0.45	0.65	dB	
(ANT to RFX)	2.0GHz to 2.7GHz		0.70	1.00		
Isolation	0.1GHz to 1.0GHz	28	33			
(ANT to RFX, RFXm to RFXn)	1.0GHz to 2.0GHz	19	24		dB	
(ANT to REA, REALL to REAL)	2.0GHz to 2.7GHz	14	19			
Input Deturn Loop	0.1GHz to 1.0GHz	19	22			
Input Return Loss (ANT to RFX)	1.0GHz to 2.0GHz	17	20		dB	
(ANT TO REA)	2.0GHz to 2.7GHz	12	15			
Second Harmonics	0.7GHz to 1.0GHz, P _{IN} =+26dBm	80	90			
(ANT to RFX)	1.0GHz to 2.0GHz, P _{IN} =+26dBm	78	88		dBc	
	2.0GHz to 2.7GHz, PIN=+26dBm	76	86			
Third Harmonics	0.7GHz to 1.0GHz, P _{IN} =+26dBm	71	81			
(ANT to RFX)	1.0GHz to 2.0GHz, P _{IN} =+26dBm	69	79		dBc	
	2.0GHz to 2.7GHz, P _{IN} =+26dBm	67	77			
0.1dB Compression Point (ANT to RFX)	0.7GHz to 2.7GHz		+28		dBm	
2rd Order Input Intercent Deint	0.7GHz to 2.7GHz					
3 rd Order Input Intercept Point	P _{IN} =+26dBm		62		dBm	
(ANT to RFX)	$\Delta f = 1 \text{MHz}$					

IMD2 Test Conditions

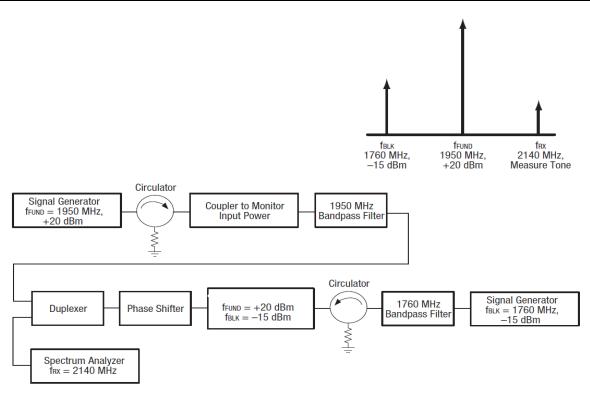
Nominal test condition unless otherwise stated. All unused ports are 50Ω terminated.

VDD=2.8V, Temp=+25°C, P_{IN}=0dBm.

Band	Transmit Frequency (MHz)	Transmit Power (dBm)	Frequency Blocker, Low (MHz)	Frequency Blocker, High (MHz)	Power Blocker (dBm)	Receive Frequency (MHz)
1	1950.0		190	4090		2140.0
2	1880.0		80	3840	15	1960.0
4	1732.0	+20	400	3864		2132.0
5	836.5	+20	45	1718	-15	881.5
7	2535.0		120	5187		2655.0
8	897.0		45	1839		942.0

IMD3 Test Conditions

Nominal test condition unless otherwise stated. All unused ports are 50Ω terminated.


VDD=2.8V, Temp =+25°C, P_{IN}=0dBm.

Band	Transmit Frequency	Transmit Power	Frequency Blocker,	Power Blocker	Receive Frequency
	(MHz)	(dBm)	(MHz)	(dBm)	(MHz)
1	1950.0		1760.0		2140.0
2	1880.0		1800.0		1960.0
4	1732.0	+20	1332.0	-15	2132.0
5	836.5	+20	791.5	-15	881.5
7	2535.0		2415.0		2655.0
8	897.0		852.0		942.0

Triple Beat Ratio Test Conditions

Band	Transmit Frequency 1 (MHz)	Transmit Power 1 (dBm)	Transmit Frequency 2 (MHz)	Transmit Power 2 (dBm)	Frequency Blocker @ ANT (MHz)	Power Blocker (dBm)	TBR Product Frequency (MHz)
2	1880.0	+21.5	1881.0	+21.5	1960.0	-30	1960.0 ± 1
5	836.5	721.0	881.5	+21.5	881.5	-30	881.5±1

Typical Third Order Intermodulation Test Setup

Power ON and OFF sequence

It is very important that the user adheres to the correct power-on/off sequence in order to avoid damaging the device (Note 3).

Power ON

- 1) Apply voltage supply VDD
- 2) Wait 100 μs or greater and then apply logic supply VIO
- 3) Wait 10µs or greater and then apply RFFE
- 4) Wait 5µs or greater after RFFE Trigger falling edge and then apply the RF Signal

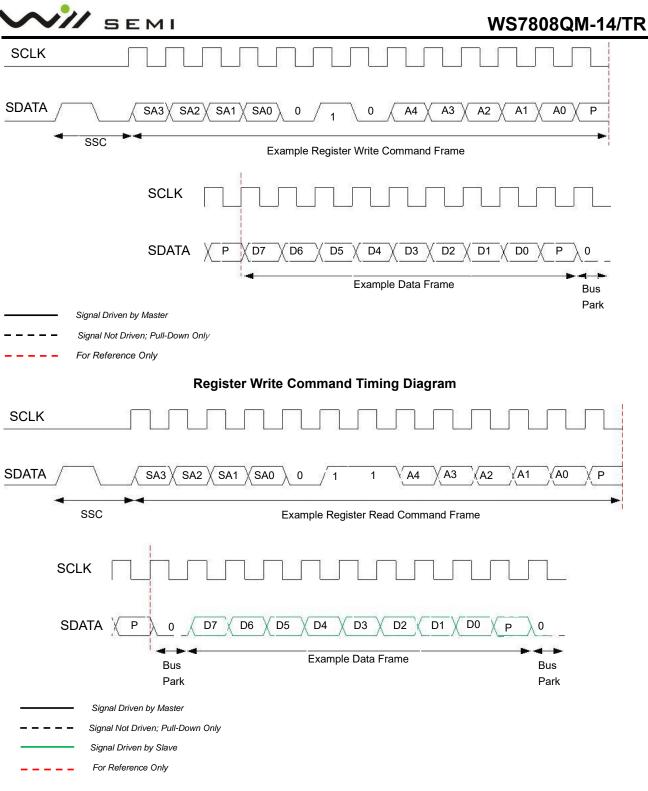
Power OFF

- 1) Remove the RF Signal
- 2) Remove RFFE
- 3) Remove logic supply VIO
- 4) Remove voltage supply VDD

WS7808QM-14/TR

	VDD V ON O	IO RE N TRIG			
VDD -	≥100us	↑ 			≥100us
VIO -		/ 			
-		1			
Slave State	Shut Down	Start Up		Active	Shut Down
SDATA,SCLK -		≥10us	∢> ≥5us		
RF Signal-					

Note 3: VIO can be applied to the device after VDD or removed before VDD .It is important to wait 10 μ s after VIO & VDD are applied before sending SDATA to ensure correction data transmission. The minimum time between a power up and power down sequence (and vice versa) is \geq 100us.


Command Sequence Bit Definitions

							Devite			Ex		Extended Operation			
Туре	SSC	C11-C8	C7	C6-C5	C4	C3-C0	Parity Bits	BPC	DA7(1)-	Parity	BPC	DA7(n)-	Parity	врс	
							Dits		DA0(1)	Bits	BFC	DA0(n)	Bits	BPC	
Reg_0	Y	6 A [2-0]	1	Data[6:5]	Dete[4]	Data{3:0]	Y	Y							
Write	Ţ	SA[3:0]	1	Data[0.5]	Data[4]	Data(3.0]	T	T	-	-	-	-	-	-	
Reg_1	Y	6 A [2:0]	0	10	Adds[4]	Data (2:01	Y		Dete[7:0]				Y	×	
Write	ř	SA[3:0]	0	10	Addr[4]	Data{3:0]	ř	-	Data[7:0]	-	-	-	Ŷ	Ŷ	
Reg	Y	0.412-01	0	44	۵ ما ما مر ۸۱	D-t-(2-0)	V	V	Data [7:0]				V	×	
Read	Ŷ	SA[3:0]	0	11	Addr[4]	Data{3:0]	Y	Y	Data[7:0]	-	-	-	Y	Ŷ	

Legend:

SSC = Sequence start command DA = Data/address frame bits BC = Byte count (# of consecutive addresses)

C = Command frame bits BPC = Bus park cycle

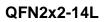
Register Read Command Timing Diagram

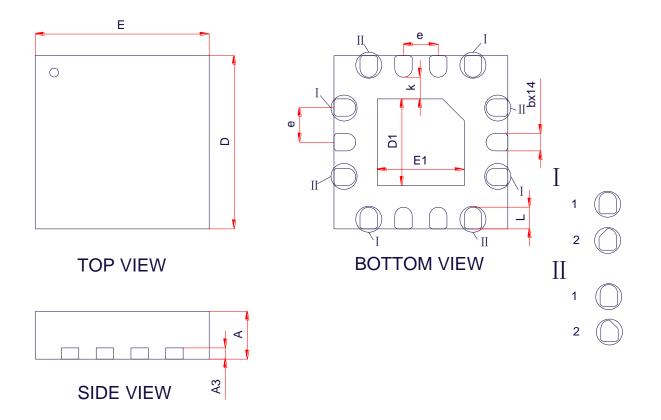
Register Truth Table (ANT)

Mode				Regist	er Bits			
wode	D7	D6	D5	D4	D3	D2	D1	D0
Isolation		0	0	0	0	0	0	0
RF1		0	0	0	0	0	1	0
RF2		0	0	0	1	0	1	0
RF3		0	0	0	1	1	1	0
RF4		0	0	0	1	0	1	1
RF5		0	0	0	0	0	0	1
RF6		0	0	0	1	0	0	1
RF7		0	0	0	0	1	1	0
RF8		0	0	0	0	1	0	0

Register Description and Programming

Registe	r			Default
Name	Address (Hex)	Parameter	Description	Name (Binary)
Register	0000	MODE_CTRL	Bits[6:0]: See Register Truth Table for logic	0000000
		SOFTWARE RESET	Bits[7]: Resets all data to default values except for USID, GSID, or the contents of the PM_TRIG Register. 0 = Normal operation (active) 1 = Software reset	0
		COMMAND_FRAME_PARITY_ERR	Bit[6]: Command sequence received with parity error – discard command.	0
		COMMAND_LENGTH_ERR	Bit[5]: Command length error.	0
RFFE_STATUS	001A	ADDRESS_FRAME_PARITY_ERR	Bit[4]: Address frame parity error =1.	0
		DATA_FRAME_PARITY_ERR	Bit[3]: Data frame with parity error.	0
		READ_UNUSED_REG	Bit[2]: Read command to an invalid address.	0
		WRITE_UNUSED_REG	Bit[1]: Write command to an invalid address.	0
		BID_GID_ERR	Bit[0]: Read command with a BROADCAST_ID (refer to the MIPI Alliance Specification) or GSID.	0
PM_TRIG (Note 4)	001C	PWR_MODE	Bits[7:6]: 00 = Normal operation (active) 01 = Default settings (startup) 10 = Low power (low power) 11 = Reserved	00

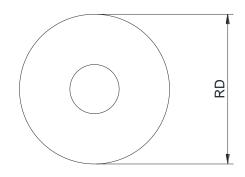

WS7808QM-14/TR

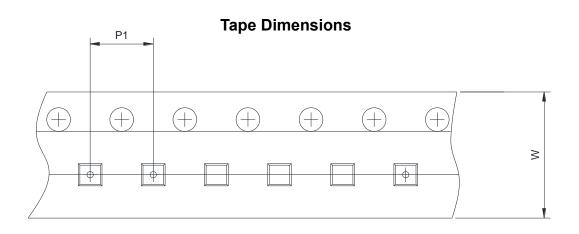

		Trigger_Mask_2	Bit[5]: If this bit is set, trigger 2 is disabled. When all triggers are disabled, if writing to a register that is associated with trigger 2, the data goes directly to the destination register.	0	
		Trigger_Mask_1	Bit[4]: If this bit is set, trigger 1 is disabled. When all triggers are disabled, if writing to a register that is associated with trigger 1, the data goes directly to the destination register.	0	
		Trigger_Mask_0	Bit[3]: If this bit is set, trigger 0 is disabled. When all triggers are disabled, if writing to a register that is associated with trigger 0, the data goes directly to the destination register.	0	
		Trigger_2	Bit[2]: If this bit is set, data is loaded into the trigger 2 registers.	0	
		Trigger_1	Bit[1]: If this bit is set, data is loaded into the trigger 1 registers.	0	
		Trigger_0	Bit[0]: If this bit is set, data is loaded into the trigger 0 registers.	0	
PRODUCT_ID	001D	PRODUCT_ID	Bits[7:0]: This is a read-only register. However, during the programming of the Unique Slave Identifier (USID), a write command sequence is performed on this register but the value is not changed.	00001000	
MANUFAC- TURER_ID	001E	MANUFACTURER_ID[7:0]	Bits[7:0]: Read-only register	10111100	
MAN_USID	001F	Reserved	Bits[7:6]: Reserved	00	
		MANUFACTURER_ID[9:8]	Bits[5:4]: Read-only register	11	
		USID	Bits[3:0]: Programmable USID. A write to these bits programs the USID.	1010	

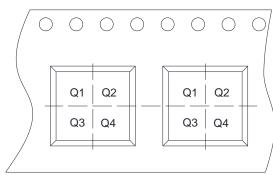
Note 4: Unlike the complete independence between triggers 0, 1, and 2, and also between the associated trigger masks 0, 1, and 2, respectively, as described in the MIPI RFFE Specification this device uses additional interactions between the provided trigger functions. The delayed application of updated data to all triggerable registers in this device may be accomplished using any of the three triggers (0, 1, or 2), provided that the particular triggerable used is not currently masked off. If multiple triggers are enabled, any or all of those are sufficient to cause the data to be transferred from shadow registers to destination registers for all triggerable registers in the device. It is also necessary to disable all three triggers (i.e., set all three trigger masks) to ensure that data written to any triggerable register will

SEMI

Package Dimensions




Cumhal	Dimensions in Millimeters					
Symbol	Min.	Тур.	Max.			
A	0.50	0.55	0.60			
A3	0.152Ref.					
D	1.95	2.00	2.05			
E	1.95	2.00	2.05			
D1	0.90	1.00	1.10			
E1	0.90	1.00	1.10			
b	0.15	0.20	0.25			
е	0.40 BSC					
L	0.19	0.25	0.30			
К	0.20	0.25	0.31			


Tape and Reel Information

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	✓ 7inch	13inch		
W	Overall width of the carrier tape	🕑 8mm	🗌 12mm	🗌 16mm	
P1	Pitch between successive cavity centers	2mm	✓ 4mm	8mm	
Pin1	Pin1 Quadrant	✓ Q1	Q2	🗌 Q3	Q4