

Chip Antenna Series Bluetooth \ WLAN Chip Antenna ANT321612042G4A

CUSTOMER:		
CUSTOMER P/N:		
OUR DWG No:		
QUANTITY:	DATE:	

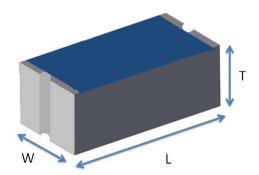
	SPECIFICATION ACCEPTED BY:
COMPONENT	
ENGINEER	
ELECTRICAL	
ENGINEER	
MECHANICAL	
ENGINEER	
APPROVED	
REJECTED	

Prepared	Checked	Approved

Applications

This antenna is designed for Bluetooth\WLAN application and it's suitable for cellular phones, PDA, notebook, navigator, and all devices which have Bluetooth\WLAN function.

Features

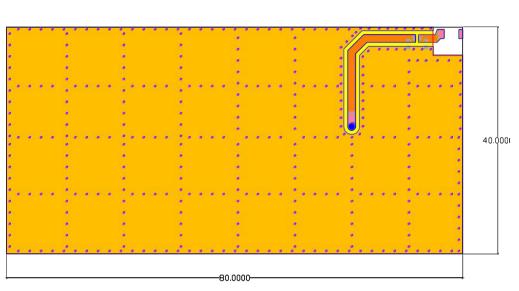

- Omni-directional radiation
- •Low profile and compact size (3.2 x 1.6x 1.2mm)
- Low cost

- •Lead free soldering compatible
- •RoHS compliant
- •Tape and reel packing

Electrical Characteristics

2400 ~2500 MHz		
100 MHz (Min.)		
2.71 dBi (Typ.)		
50 Ohm		
-6.5 dB (Max)		
Linear		
Omni-directional		
-40 ~85 ℃		
10sec. (@ 260℃)		
Cu/ Sn (Leadless)		

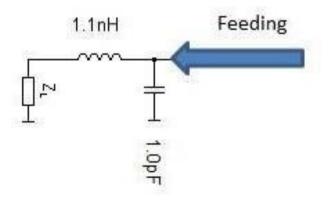
Antenna Dimension



Dimension (mm)				
L	3.23 ± 0.20			
W	1.66 ± 0.20			
Т	1.23 ± 0.20			

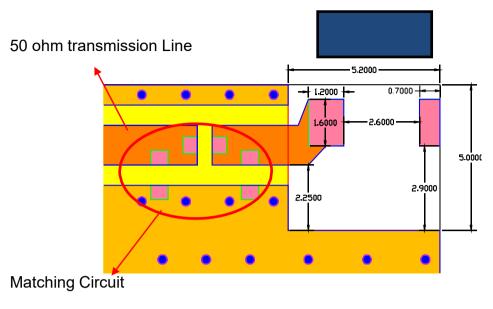
Recommended PCB layout (unit:mm)

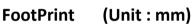
Evaluation Board Dimension

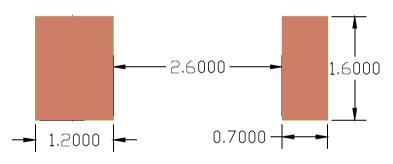


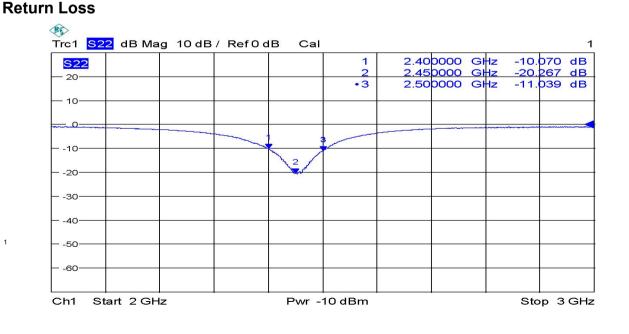
PCB Dimension

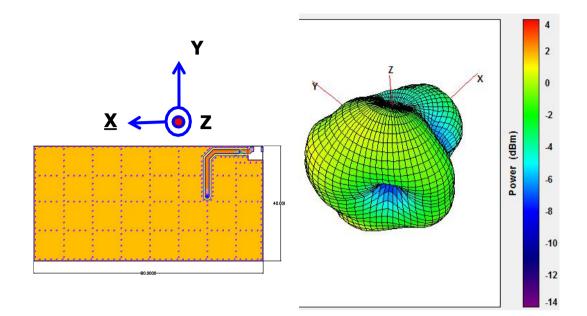
Unit : mm



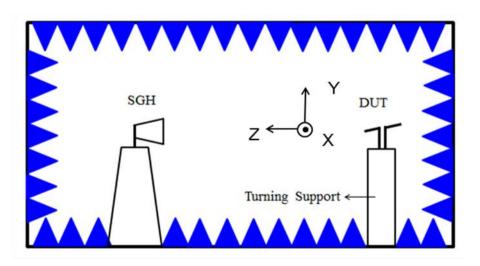

Suggested Matching Circuit




Layout Dimensions in Clearance area(Size=5.2*5.0mm)



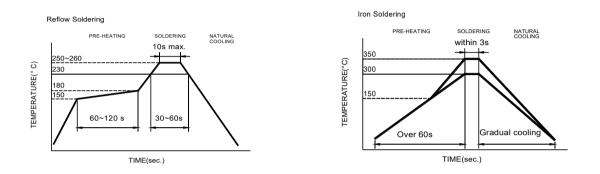
Electrical Characteristics



Radiation Pattern

	Efficiency
2400MHz	55.21 %
2450MHz	66.45 %
2500MHz	57.53 %

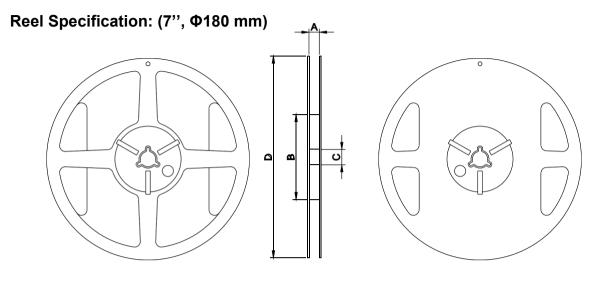
Chamber Coordinate System


Reliability and Test Condictions

Solderability	1. Wetting shall exceed 90% coverage 2. No visible mechanical damage TEMP (°C) 230°C 150°C 4±1 sec. 60sec	Pre-heating temperature:150°C/60sec. Solder temperature:230±5°C Duration:4±1sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin			
Solder heat Resistance	1. No visible mechanical damage 2. Central Freq. change :within $\pm 6\%$ TEMP (°C) 260°C 150°C 10 ± 0.5 sec. 60sec	Pre-heating temperature:150°C/60sec. Solder temperature:260±5℃ Duration:10±0.5sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin			
Component Adhesion (Push test)	1. No visible mechanical damage	The device should be reflow soldered(230±5°C for 10sec.) to a tinned copper substrate A dynometer force gauge should be applied the side of the component. The device must with-ST-F 0.5 Kg without failure of the termination attached to component.			
Component Adhesion (Pull test)	1. No visible mechanical damage	Insert 10cm wire into the remaining open eye bend ,the ends of even wire lengths upward and wind together. Terminal shall not be remarkably damaged.			
Thermal shock	1. No visible mechanical damage 2. Central Freq. change :within +6% Phase Temperature(°C) 1 +85±5°C 30±3 2 Room Within Temperature 3sec 3 -40±2°C 30±3 4 Room Within Temperature 3sec	+85°C=>30±3min -40°C=>30±3min Test cycle:10 cycles The chip shall be stabilized at normal condition for 2~3 hours before measuring.			
Resistance to High Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: 85±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.			
Resistance to Low Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature:-40±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.			
Humidity	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: 40±2°C Humidity: 90% to 95% RH Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.			

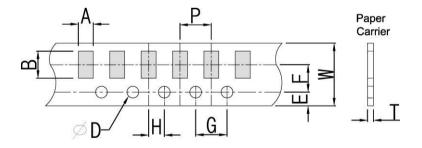
Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.


Recommended temperature profiles for re-flow soldering in Figure 1.

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be emp s are recommended.

- Preheat circuit and products to 150°C
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)
- 1.0mm tip diameter (max)
- Limit soldering time to 3 sec.


Reel and Taping Specification

7" x 8 mm

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
8	9.0±0.5	60±2	13.5±0.5	178±2	3000

Tapping Specification

Packaging	Туре	Α	В	W	E	F	G	Н	Т	ψD	Р
Paper Type	3216	1.90±0.20	3.50±0.20	8.0±0.20	1.75±0.10	3.5±0.05	4.0±0.10	2.0±0.05	0.75±0.10	1.50±0.10	4.0±0.1