
Constant Voltage and Constant Current controller ME4313

General Description

ME4313 is a highly integrated solution for a constant voltage/constant current mode SMPS application.

The ME4313 contains one 1.21V voltage reference with ±1% accuracy, one current sensing circuit and two operational amplifiers. Combining the voltage reference with one operational amplifier makes ME4313 an ideal voltage controller for use in adapters and battery chargers. The other low voltage reference combined with the other operational amplifier makes it an ideal current limiter for output low side current sensing.

Selection Guide

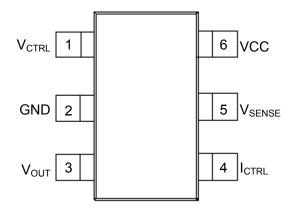
Features

- Constant Voltage and Constant Current Control
- Precision Internal Voltage Reference
- •Few External Components
- Easy Compensation
- Low supply current: 0.5mA
- Current Control Loop Reference

B Version: 200mV

C Version: 70mV

- Operating temperature range:-40 to 125℃
- Operating Supply Voltage: 2.5V to 18V
- Available in SOT23-6 package


Typical Application

- Adapters
- Battery Chargers

Pin Configuration

The ME4313 is offered in SOT23-6 packages shown as below.

PIN Assignments

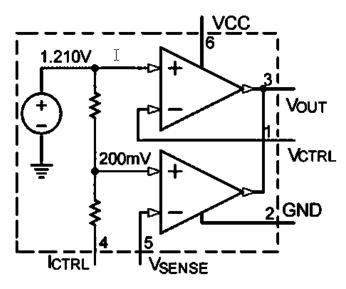
Pin Num.	Symbol	Description		
1	V_{CTRL}	Input pin of the voltage control loop		
2	GND	Ground		
3	V _{OUT}	Output pin. Sinking current only		
4	I _{CTRL}	Input pin of the current control loop		
5	V_{SENSE}	Input pin of the current control loop		
6	VCC	Power supply		

Absolute Maximum Ratings

Parameter	Range	Unit
Power Supply Voltage VCC	20	V
Input Voltage V _{IN}	-0.3 to V _{CC}	V
Junction Temperature T _J	150	°C
Storage Temperature T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 5sec) T _{LEAD}	260	°C
Package Thermal Resistance (Junction to Case) θ _{JC}	92	°C/W

Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage.

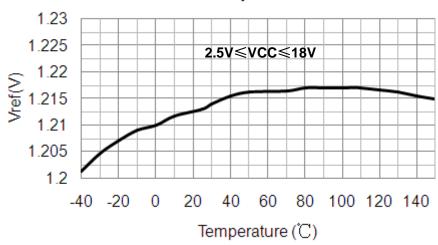
These values must therefore not be exceeded under any conditions.


V03 www.microne.com.cn Page 2 of 9

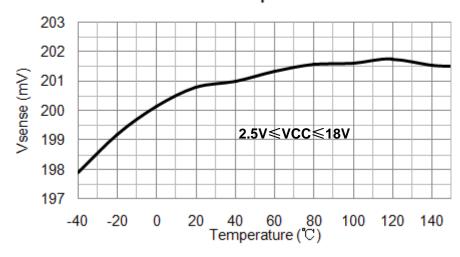
Recommended Operating Condition

Parameter	Range	Unit
Power Supply Voltage VCC	2.5 to 18	V
Operating Temperature Range T _A	-40 to 125	°C

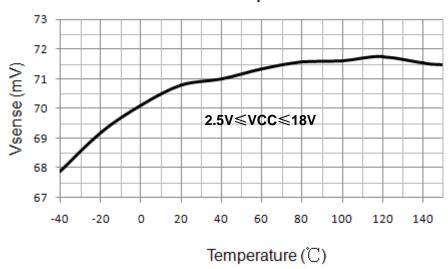
Block Diagram


Electrical Characteristics(T_A = 25°C,VCC=5V, if not otherwise noted)

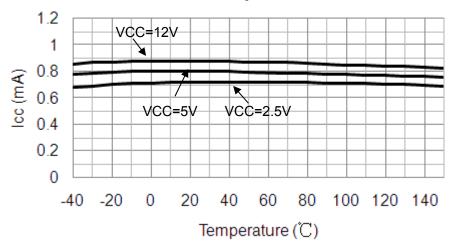
Symbol	Parameter	Test Conditions		N	/lin	Тур.	Max	Unit
Total Current Consumption								
l	Total Supply Current Not Including the			-		0.6	1.2	mA
I _{CC}	Output Sinking Current							
Voltage Control Loop								
Comme	Transconduction Gain (V _{CTRL}). Sink	1		4		3.5	1	mA/mV
Gmv	Current Only			I				
V_{REF}	Voltage Control Loop Reference			1.198		1.21	1.222	V
I _{IBV}	Input Bias Current (V _{CTRL})			-		50	-	nA
Current Control Loop								
Gmi	Transconduction Gain (I _{CTRL})				1.5	7	-	mA/mV
V	Current Control Loop Reference	I _{OUT} =2.5 B Version		196	200	204	mV	
V_{SENSE}		mA	C Versi	ion	66.5	70	73.5	mV
_		B Version		-	25	-	μΑ	
I _{IBI}	Current Out of Pin ICTRL at Vsense	C Version			18		μΑ	
Output Stage								
V_{OL}	Low Output Voltage at 10Ma Sinking					200		mV
	Current				-	200	_	IIIV
I _{os}	Output Short Circuit Current. Output to					27	60	mA
	VCC Sink Current Only				-	21	60	IIIA



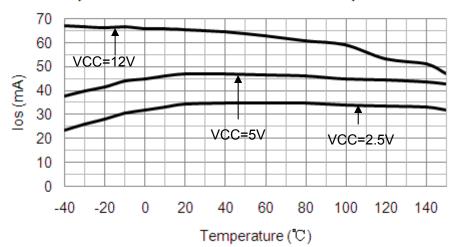
Type Characteristics



Vsense vs. Temperature



Vsense vs. Temperature



Icc vs. Temperature

Output short circuit current los vs. Temperature

Typical Application Circuit

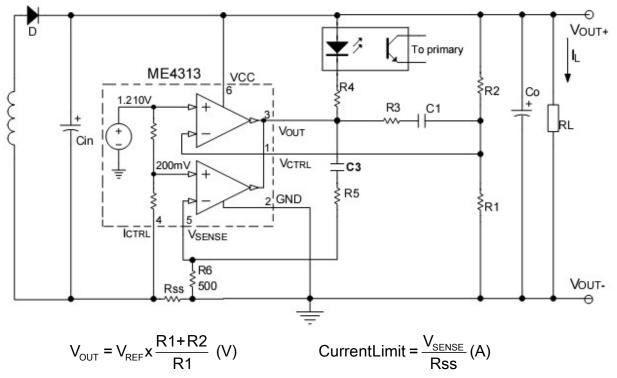


Fig.1 Typical Application 1 of ME4313

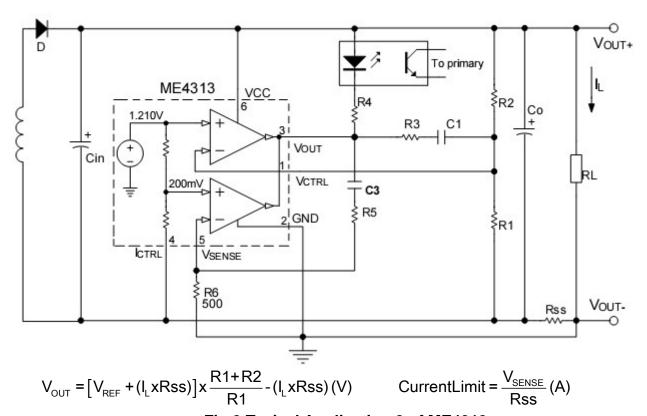
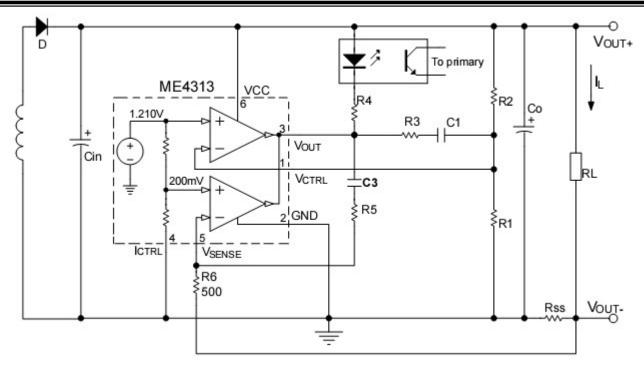
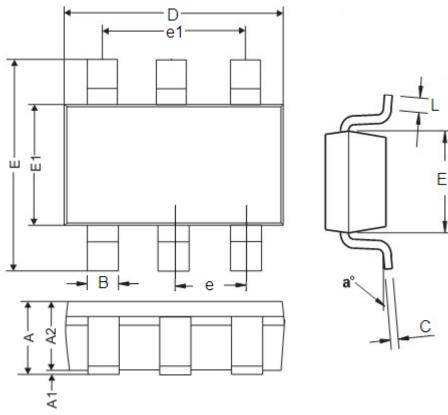



Fig.2 Typical Application 2 of ME4313

V03 <u>www.microne.com.cn</u> Page 6 of 9

$$V_{OUT} = V_{REF} x \frac{R1 + R2}{R1} - (I_{L} x Rss) (V)$$

$$CurrentLimit = \frac{V_{SENSE} x V_{REF}}{(V_{SENSE} + V_{REF}) Rss} (A)$$


Fig.3 Typical Application 3 of ME4313

V03 <u>www.microne.com.cn</u> Page 7 of 9

Packaging Information

Package type:SOT23-6 Unit:mm(inch)

DIM	Millim	neters	Inches		
DIM	Min	Max	Min	Max	
А	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95	REF	0.0374REF		
e1	1.90	REF	0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30 ⁰	00	30°	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
 described herein whose related industrial properties, patents, or other rights belong to third parties.
 The application circuit examples explain typical applications of the products, and do not guarantee the
 success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.