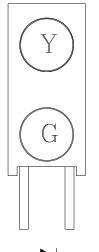


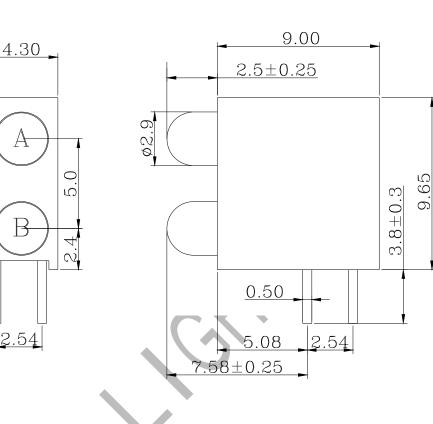
PARA LIGHT ELECTRONICS CO., LTD. 11F., No. 8, Jiankang Rd., Zhonghe Dist., New Taipei City 235, Taiwan,

11F., No. 8, Jiankang Rd., Zhon Tel: 886-2-2225-3733 E-mail: para@para.com.tw

onghe Dist., New Taipei City 235, Taiw Fax: 886-2-2225-4800 www.paralighttaiwan.com

PARA ight


3.0mm LED LAMP WITH LHY3302-1 HOLDER


LH32K050F

REV:A/3

PACKAGE DIMENSIONS

Color Description

Note:

1.All Dimensions are in millimeters.

2.Tolerance is ±0.25mm(0.010 ") Unless otherwise specified.

3. Protruded resin under flange is 1.5mm(0.059 ") max.

4.Lead spacing is measured where the leads emerge from the package.

5. Specification are subject to change without notice

6. The lamps have sharp and hard points that may injure human eyes or

fingers etc., so please pay enough care in the handling.

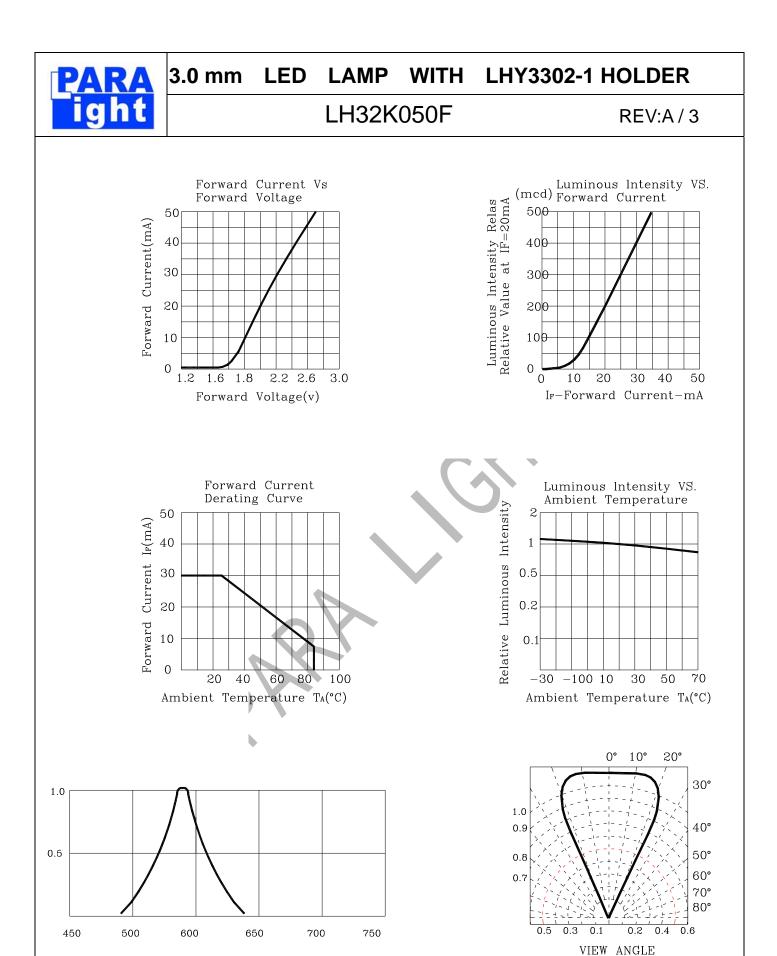
7. A=L3524LY1D-DP2.5-CP1.5-10AH B=L3524GD-DP2.5-CP1-10AH

LH32K050F

REV:A/3

FEATURES

- * 3.0mm DIA LED LAMP
- * LOW POWER CONSUMPTION.
- * I.C. COMPATIBLE.
- * LONG LIFE SOLID STATE RELIABILITY.
- * PB FREE PRODUCTS(Compliant with EU's RoHS.)


CHIP MATERIALS

- * Dice Material : GaAlInP/GaAs
- * Light Color : Yellow
- * Lens Color : Yellow Diffused

ABSOLUTE MAXIMUM RATING : ($Ta = 25^{\circ}C$)

	PARAMETER		Yellow		UNIT	
Po	wer Dissipation		78		mW	
Re	verse Voltage		5		V	
Ave	erage Forward Current		30		mA	
Pe	ak Forward Current Per Chi	p (Duty=0.1,1KHz)	120		mA	
De	rating Linear From 25°C	·	0.40		mA/°C	
Ор	erating Temperature Range		-40°C to 85°C			
				-40°C to	o 85°C	
)-0	PTICAL CHARACTERI	STICS : (Ta = 25	°C)			
-	DESCRIPTION	TEST	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	IF=10mA	1.8		2.2	V
Reverse Current VR=5 V		VR=5 V			10	μ A
Dominant Wavelength IF=10mA		IF=10mA	586		592	nm
Δλ Spectral Line Half-Width IF=10mA		IF=10mA		30		nm
	Half Intensity Angle	IF=10mA		50		deg
	Luminous Intensity	IF=10mA	8		21	mcd
	Re Ave De Op Stc	Power Dissipation Reverse Voltage Average Forward Current Peak Forward Current Per Chip Derating Linear From 25°C Operating Temperature Range Storage Temperature Range DOPTICAL CHARACTERIS DESCRIPTION Forward Voltage Reverse Current Dominant Wavelength Spectral Line Half-Width Half Intensity Angle	Power Dissipation Reverse Voltage Average Forward Current Peak Forward Current Per Chip (Duty=0.1,1KHz) Derating Linear From 25°C Operating Temperature Range Storage Temperature Range O-OPTICAL CHARACTERISTICS : (Ta = 25) OESCRIPTION TEST Forward Voltage IF=10mA Reverse Current VR=5 V Dominant Wavelength IF=10mA Half Intensity Angle	Power Dissipation 78 Reverse Voltage 5 Average Forward Current 30 Peak Forward Current Per Chip (Duty=0.1,1KHz) 120 Derating Linear From 25°C 0.4 Operating Temperature Range 0.4 Storage Temperature Range 0.4 O-OPTICAL CHARACTERISTICS : (Ta = 25°C) 0.4 DESCRIPTION TEST MIN. Forward Voltage IF=10mA Peaverse Current VR=5 V Dominant Wavelength IF=10mA Half Intensity Angle IF=10mA	Power Dissipation 78 Reverse Voltage 5 Average Forward Current 30 Peak Forward Current Per Chip (Duty=0.1,1KHz) 120 Derating Linear From 25°C 0.40 Operating Temperature Range -40°C to Storage Temperature Range -40°C to OPTICAL CHARACTERISTICS : (Ta = 25°C) -40°C to DESCRIPTION TEST MIN. TYP. Forward Voltage IF=10mA 1.8 Reverse Current VR=5 V	Power Dissipation78mlReverse Voltage5VAverage Forward Current30m,Peak Forward Current Per Chip (Duty=0.1,1KHz)120m,Derating Linear From 25°C0.40mA/Operating Temperature Range-40°C to 85°CStorage Temperature Range-40°C to 85°CO-OPTICAL CHARACTERISTICS : (Ta = 25°C)-40°C to 85°CDESCRIPTIONTESTMIN.TYP.MAX.Forward VoltageIF=10mA1.82.2Reverse CurrentVR=5 V10Dominant WavelengthIF=10mA586592Spectral Line Half-WidthIF=10mA304Half Intensity AngleIF=10mA5050

DRAWING NO. : DS-60-15-0030 DATE :2019-11-11

Wavelength(nm)

DRAWING NO. : DS-60-15-0030

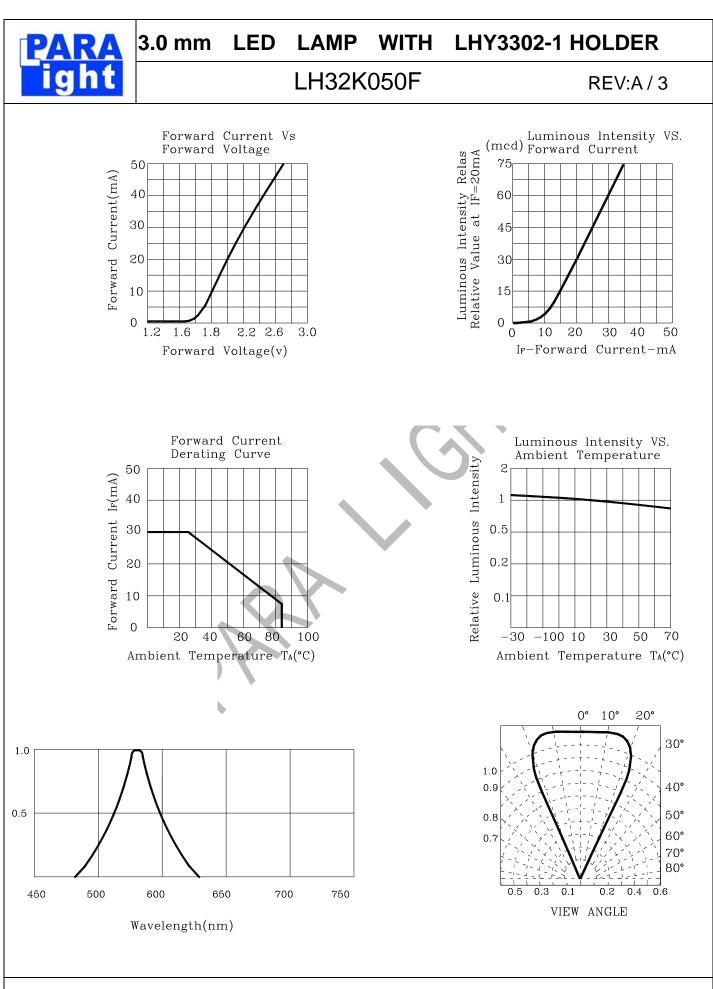
LH32K050F

REV:A/3

FEATURES

- * 3.0mm DIA LED LAMP
- * LOW POWER CONSUMPTION.
- * I.C. COMPATIBLE.
- * LONG LIFE SOLID STATE RELIABILITY.
- * PB FREE PRODUCTS(Compliant with EU's RoHS.)

CHIP MATERIALS


- * Dice Material : GaAlInP/GaAs
- * Light Color : Yellow Green
- * Lens Color :Green Diffused

ABSOLUTE MAXIMUM RATING : (Ta = 25°C)

SYMBOL	PARAMETER		Yellow Green	UNIT
Pad	Power Dissipation		78	mW
VR	Reverse Voltage		5	V
IAF	Average Forward Current		30	mA
IPF	PF Peak Forward Current Per Chip (Duty=0.1,1KHz)		120	mA
 Derating Linear From 25°C 			0.40	mA/°C
Topr Operating Temperature Range			-40°C t	o 85°C
Tstg Storage Temperature Range			-40°C t	o 85°C
LECTRO-OPTICAL CHARACTERISTICS : (Ta = 25°C)				

			/			
SYMBOL	DESCRIPTION	TEST	MIN.	TYP.	MAX.	UNIT
Vf	Forward Voltage	IF=10mA	1.8	2.0	2.2	V
IR	Reverse Current	VR=5 V			10	μ A
λD	Dominant Wavelength	IF=10mA	568		574	nm
$ riangle \lambda$	Spectral Line Half-Width	IF=10mA		30		nm
2 0 1/2	Half Intensity Angle	IF=10mA		50		deg
lv	Luminous Intensity	IF=10mA	7		21	mcd

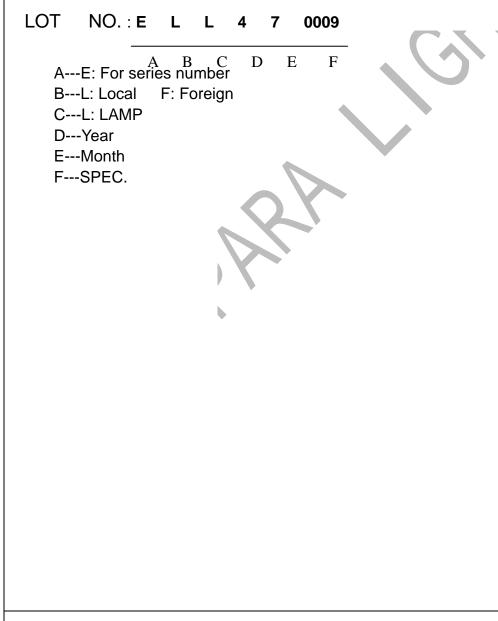
DRAWING NO. : DS-60-15-0030 DATE :2019-11-11

DRAWING NO. : DS-60-15-0030

DATE :2019-11-11

PARA ight

3.0 mm LED LAMP WITH LHY3302-1 HOLDER


LH32K050F

REV:A/3

Label Explanation

PAR igh	*		;电子股份有 LIGHT ELECTRONIC	
PARA	NO.	:		
LOT	NO.	:		INSPECTED
BIN		:		
Q'	ΤY	:	PCS	
N. W		:	g	

PARA NO. : Refer to p15

DRAWING NO. : DS-60-15-0030 DATE :2019-11-11

LH32K050F

REV:A/3

Luminous Intensity BIN Limits

Test condition : @10 ± 2mA				
BIN Code	I _{Vmin} (mcd)	I _{Vmax} (mcd)		
G	8	11		
Н	11	15		
I	15	21		

Dominant Wavelength BIN Limits

YELLOW Test condition : @10 ± 2mA				
λ _{Dmin} (nm)	λ_{Dmax} (nm)			
586	588			
588	590			
590	592			
	λ <u>omin</u> (nm) 586 588			

Luminous Intensity BIN Limits

Test condition : @10 ± 2mA					
BIN Code	I _{Vmin} (mcd)	I _{Vmax} (mcd)			
G	7	11			
Н	11	15			
I	16	21			

◆ Dominant Wavelength BIN Limits

GREEN Test condition : @10 ± 2mA					
BIN Code	$\lambda_{\text{Dmin}}(\mu\mathbf{m})$	λ_{Dmax} (nm)			
G17	568	570			
G18	570	572			
G19	572	574			

LED其他处理方式:LED第二键合点涂银胶,以加固第二焊点。 具体如下图所示。

DRAWING NO. : DS-60-15-0030

DATE :2019-11-11

PARA
ight3.0 mmLEDLAMPWITHLHY3302-1 HOLDERLH32K050FREV:A

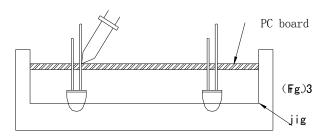
REV:A/3

•SOLDERING

METHOD	SOLDERING CONDITIONS	REMARK			
DIP SOLDERING	Bath temperature: 260° C Immersion time: with 5 sec ,1time	 Solder no closer than 3mm from the base of the package Using soldering flux," RESIN FLUX" is recommended. Attached data of temperatuare cure for your reference 			
SOLDERING IRON	• During soldering, take care not to press the tip of iron against the lead. SOLDERING				
1) When solderi	ng the lead of LED in a condition that the	package is fixed with a panel (See Fig.1),			
be careful not	to stress the leads with iron tip.				
 C Lead wries Panel (Fig. 1) 2) When soldering wire to the lead, work with a Fig (See Fig.2) to avoid stressing the package. 					
		ead wries			
Leave a slight clearance (Fig. 2)					
Regarding solution in the tinning oven for product-tinning, compound sub-solution made of tin & copper and sliver is proposed with the temperature of Celsius 260. The proportion of the alloyed solution is tin 95.5: copper 3.5: silver 0.5 by percentage. The time of tinning is constantly 3 seconds.					

DRAWING NO. : DS-60-15-0030

DATE :2019-11-11


0

3.0 mm LED LAMP WITH LHY3302-1 HOLDER

LH32K050F

REV:A/3

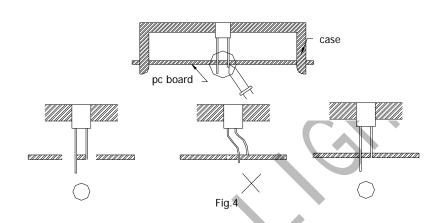
 Similarly, when a jig is used to solder the LED to PC board, take care as much as possible to avoid steering the leads (See Fig.3).

- 4) Repositioning after soldering should be avoided as much as possible. If inevitable, be sure to preserve the soldering conditions with irons stated above: select a best-suited method that assures the least stress to the LED.
- 5) Lead cutting after soldering should be performed only after the LED temperature has returned to normal temperature.

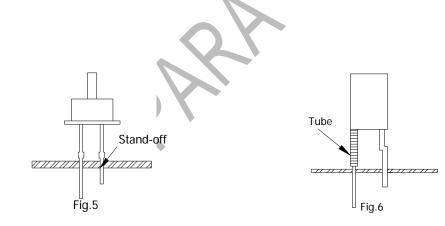
• STORAGE

- 1) The LEDs should be stored at 30° C or less and 70% RH or less after being shipped from PARA and the storage life limits are 1 year .
- 2) PARA LED lead frames are comprised of a stannum plated iron alloy. The silver surface may be affected by environments which contain corrosive gases and so on. Please avoid conditions which may cause the LEDs to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the LEDs be used as soon as possible.

Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur.



LH32K050F


REV:A/3

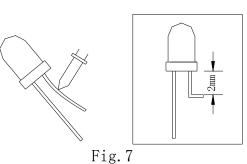
•LED MOUNTING METHOD

3) When mounting the LED by using a case, as shown Fig.4, ensure that the mounting holds on the PC board match the pitch of the leads correctly-tolerance of dimensions of the respective components including the LED should be taken into account especially when designing the case, PC board, etc. to prevent pitch misalignment between the leads and board holes, the diameter of the board holes should be slightly larger than the size of the lead. Alternatively, the shape of the holes should be made oval. (See Fig.4)

4) Use LEDs with stand-off (Fig.5) or the tube or spacer made of resin (Fig.6) to position the LEDs.

LHY3302-1 HOLDER 3.0 mm LED LAMP WITH

LH32K050F


REV:A/3

Stress

Fig.8

FORMED LEAD

1) The lead should be bent at a point located at least 2mm away from the package. Bending should be performed with base fixed means of a jig or pliers (Fig.7)

- 2) Forming lead should be carried our prior to soldering and never during or after soldering.
- 3) Form the lead to ensure alignment between the leads and the hole on board, so that stress against the LED is prevented. (Fig.8)

•LEAD STRENGTH 1) Bend strength Do not bend the lead more than twice. (Fig.9) Fig.9 DRAWING NO. : DS-60-15-0030 DATE :2019-11-11 Page:12

LH32K050F

REV:A/3

Tensile strength (@Room Temperature)
 If the force is 1kg or less, there will be no problem. (Fig.10)

• HEAT GENERATION

1) Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification.

The operating current should be decided after considering the ambient maximum temperature of LEDs.

•CHEMICAL RESISTANCE

- 1) Avoid exposure to chemicals as it may attack the LED surface and cause discoloration.
- 2) When washing is required, refer to the following table for the proper chemical to be sued. (Immersion time: within 3 minutes at room temperature.)

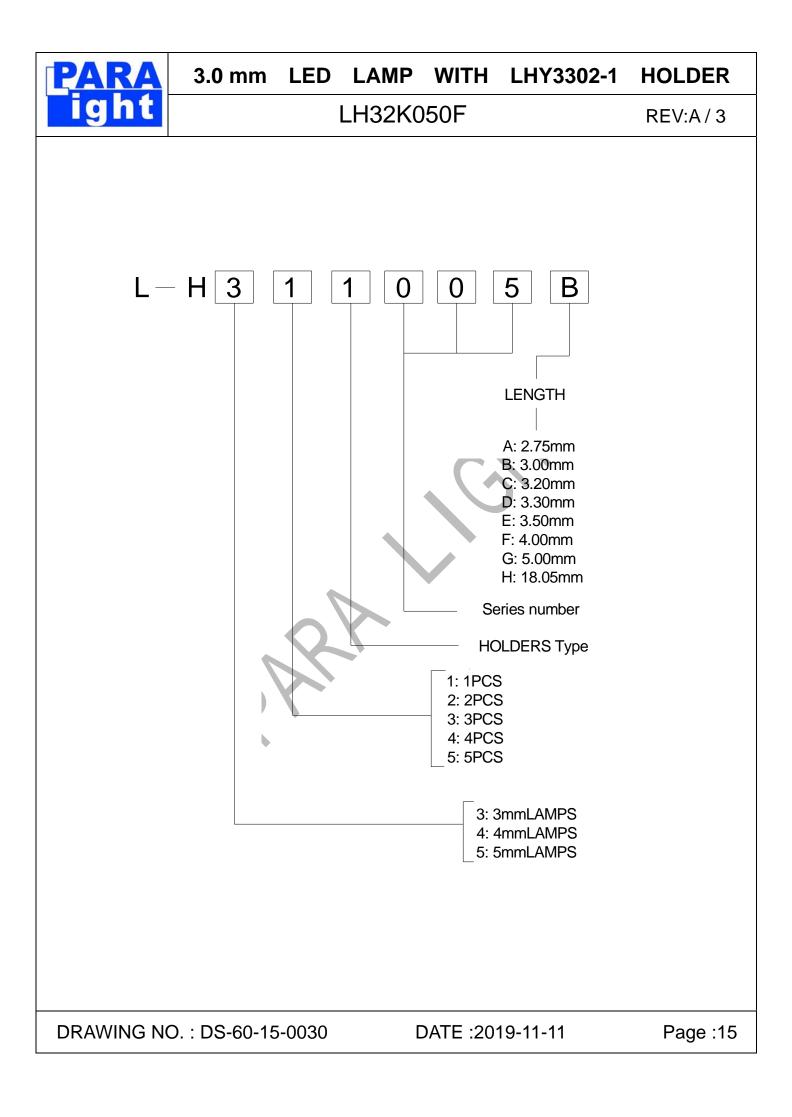
SOLVENT	ADAPTABILITY
Freon TE	\odot
Chlorothene	\times
Isopropyl Alcohol	\odot
Thinner	\times
Acetone	\times
Trichloroethylene	\times

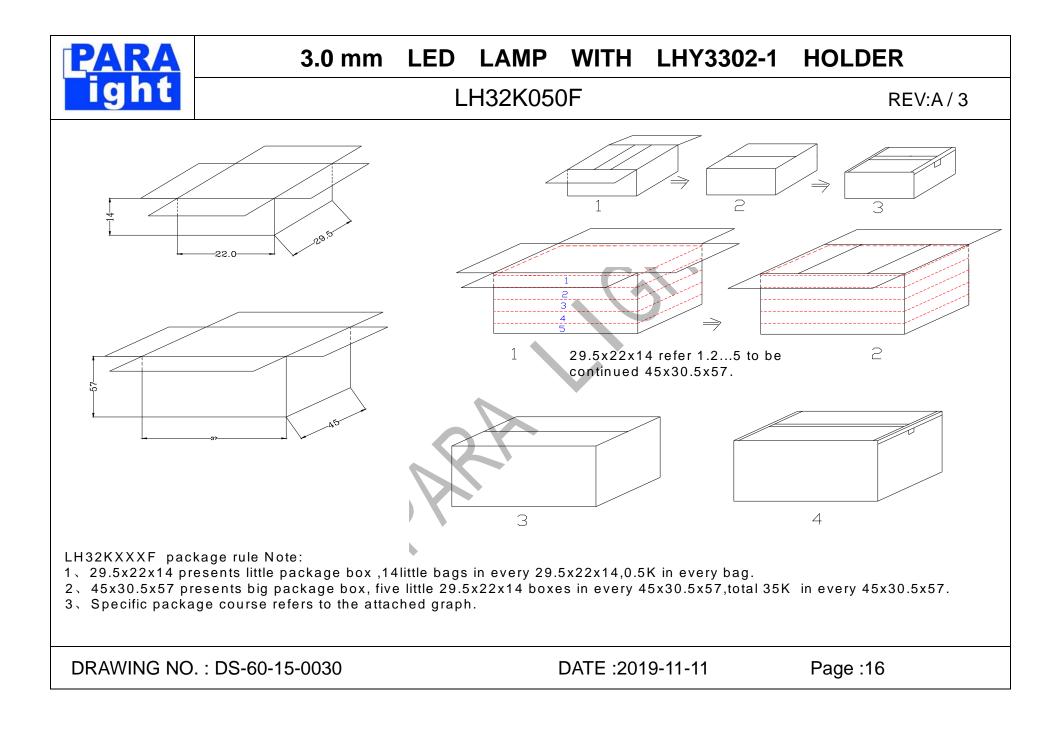
 \odot --Usable \times --Do not use.

NOTE: Influences of ultrasonic cleaning of the LED resin body differ depending on such factors as the oscillator output, size of the PC board

and the way in which the LED is mounted. Therefore, ultrasonic cleaning should only be performed after confirming there is no problem by conducting a test under practical.

DRAWING NO. : DS-60-15-0030




LH32K050F

REV:A/3

•OTHERS

- 1) Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum rating when using the LEDs with matrix drive.
- Flashing lights have been known to cause discomfort in people; you can prevent this by taking precautions during use. Also, people should be cautious when using equipment that has had LEDs incorporated into it.
- 3) The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliances). Consult PARA's sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor control systems, automobiles, traffic control equipment, life support systems and safety devices).
- 4) User shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from PARA. When defective LEDs are found, the User shall inform PARA directly before disassembling or analysis.
- The formal specifications must be exchanged and signed by both parties before large volume purchase begins.
- 6) The appearance and specifications of the product may be modified for improvement without notice.

