

Surface Mounted Over-voltage Protection Thyristor

Features

- Low reverse leakage
- High reliability
- High temperature soldering guaranteed: 260°C/10seconds
- Lead and body according with RoHS standard
- Have low capacitance, making them ideal for high-speed transmission equipment
- Will not fatigue
- Are non-degenerative
- Eliminate voltage overshoot caused by fast-rising transients
- Cannot be damaged by voltage

Mechanical Data

- Case:DO-214AA Molded plastic
- Epoxy: UL 94V-0 rate flame retardant
- Lead: Pure tin plated, lead free
- Green compound

Electrical Parameters

Parameter	Definition
V_{DRM}	Peak Off-state Voltage – maximum voltage that can be applied while maintaining off state
Vs	Switching Voltage – maximum voltage prior to switching to on state
V _T	On-state Voltage – maximum voltage measured at rated on-state current
I _{DRM}	Leakage Current – maximum peak off-state current measured at V _{DRM}
I _S	Switching Current – maximum current required to switch to on state
I _T	On-state Current – maximum rated continuous on-state current
I _H	Holding Current – minimum current required to maintain on state
Со	Off-state Capacitance – typical capacitance measured in off state
V _{PP}	Peak Pulse Voltage – maximum rated peak impulse voltage
I _{PP}	Peak Pulse Current – maximum rated peak impulse current

Electrical Characteristics

Part Number	Marking	V _{DRM} (V)	V _s (V)	V _T (V)	I _{DRM} (uA)	I _S (mA)	I _T (A)	I _H (mA)	C _o (pF)	V _{PP} 10/700us (V)	I _{PP} 10/1000us (A)
P8800SC	P880C	750	1000	4.0	5.0	800	2.2	50	50	6000	150

Note

- 1) All measurements are made at an ambient temperature of 25°C. I_{PP} applies to -40°C through +85°C temperature range.
- 2) Off-state capacitance (C₀) is measured at 1 MHz with a 2 V bias and is typical value.

Thermal Considerations

Package	Symbol	Parameter	Value	Unit
DO-214AA SMB	T_J	Operating Junction Temperature	-40 to +150	°C
	T _S	Storage Temperature Range	-40 to +150	°C
	R_{JA}	Junction to Ambient on printed circuit	53	°C/W

Characteristics Curves

Figure 1. V-I Characteristics

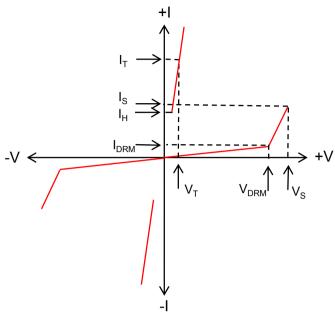


Figure 3. Normalized V_S Change versus **Junction Temperature**

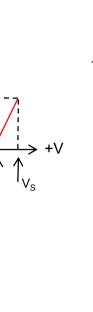


Figure 2. $t_r \times t_d$ Pulse Wave-form

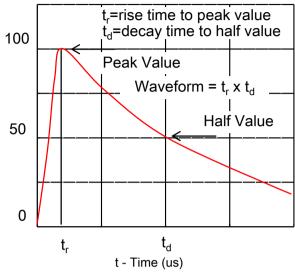
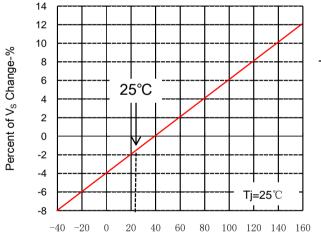
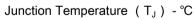
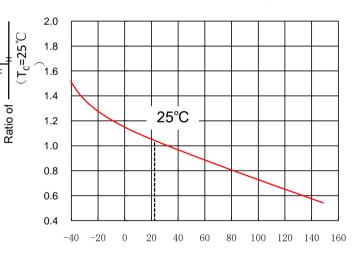





Figure 4. Normalized DC Holding **Current versus Case Temperature**

Case Temperature (T_J) - $^{\circ}$ C