Mode	AFC	Antenna Diversity	Preamble Type	Recommended Preamble Length	Recommended Preamble Detection Threshold
4(G)FSK	Enabled	Disabled	Standard	48 symbols 16 symbols	
4(G)FSK			Non-standard	Not St	upported
OOK	Disabled	Disabled	Standard	4 Bytes	20 bits
OOK	Disabled	Disabled	Non-standard	2 Bytes	0 bits
OOK	Enabled			Not St	upported

Table 13. Recommended Preamble Length (Continued)

Notes:

1. The recommended preamble length and preamble detection thresholds listed above are to achieve 0% PER. They may be shortened when occasional packet errors are tolerable.

2. All recommended preamble lengths and detection thresholds include AGC and BCR settling times.

3. "Standard" preamble type should be set for an alternating data sequence at the max data rate (...10101010...)

4. "Non-standard" preamble type can be set for any preamble type including ...10101010...

Recommende

5. When preamble detection threshold = 0, sync word needs to be 3 Bytes to avoid false syncs. When only a 2 Byte sync word is available the sync word detection can be extended by including the last preamble Byte into the RX sync word setting.

5. Internal Functional Blocks

The following sections provide an overview to the key internal blocks and features.

5.1. RX Chain

The internal low-noise amplifier (LNA) is designed to be a wide-band LNA that can be matched with three external discrete components to cover any common range of frequencies in the sub-GHz band. The LNA has extremely low noise to suppress the noise of the following stages and achieve optimal sensitivity; so, no external gain or front-end modules are necessary. The LNA has gain control, which is controlled by the internal automatic gain control (AGC) algorithm. The LNA is followed by an I-Q mixer, filter, programmable gain amplifier (PGA), and ADC. The I-Q mixers downconvert the signal to an intermediate frequency. The PGA then boosts the gain to be within dynamic range of the ADC. The ADC rejects out-of-band blockers and converts the signal to the digital domain where filtering, demodulation, and processing is performed. Peak detectors are integrated at the output of the LNA and PGA for use in the AGC algorithm.

5.1.1. RX Chain Architecture

It is possible to operate the RX chain in different architecture configurations: fixed-IF, zero-IF, scaled-IF, and modulated IF. There are trade-offs between the architectures in terms of sensitivity, selectivity, and image rejection. Fixed-IF is the default configuration and is recommended for most applications. With 35 dB native image rejection and autonomous image calibration to achieve 55 dB, the fixed-IF solution gives the best performance for most applications. Fixed-IF obtains the best sensitivity, but it has the effect of degraded selectivity at the image frequency. An autonomous image rejection calibration is included in the Si4362 and described in more detail in "5.2.3. Image Rejection and Calibration" on page 26. For fixed-IF and zero-IF, the sensitivity is degraded for data rates less than 100 kbps or bandwidths less than 200 kHz. The reduction in sensitivity is caused by increased flicker noise as dc is approached. The benefit of zero-IF is that there is no image frequency; so, there is no degradation in the selectivity curve, but it has the worst sensitivity. Modulated IF is useful for OOK if image elimination is required similar to Zero-IF. Scaled-IF is a trade-off between fixed-IF and zero-IF. In the scaled-IF architecture, the image frequency is placed or hidden in the adjacent channel where it only slightly degrades the typical adjacent channel selectivity. The scaled-IF approach has better sensitivity than zero-IF but still some degradation in selectivity due to the image. In scaled-IF mode, the image frequency is directly proportional to the channel bandwidth selected. Figure 7 demonstrates the trade-off in sensitivity between the different architecture options.

Figure 7. RX Architecture vs. Data Rate

5.2. RX Modem

Using high-performance ADCs allows channel filtering, image rejection, and demodulation to be performed in the digital domain, which allows for flexibility in optimizing the device for particular applications. The digital modem performs the following functions:

- Channel selection filter
- RX demodulation
- Automatic Gain Control (AGC)
- Preamble detection
- Invalid preamble detection
- Radio signal strength indicator (RSSI)
- Automatic frequency compensation (AFC)
- Image Rejection Calibration
- Packet handling including EZMAC[®] features
- Cyclic redundancy check (CRC)

The digital channel filter and demodulator are optimized for ultra-low-power consumption and are highly configurable. Supported modulation types are GFSK, FSK, 4GFSK, 4FSK, GMSK, ASK, and OOK. The channel filter can be configured to support bandwidths ranging from 850 down to 1.1 kHz. A large variety of data rates are supported ranging from 100 bps up to 1 Mbps. The configurable preamble detector is used with the synchronous demodulator to improve the reliability of the sync-word detection. Preamble detection can be skipped using only sync detection, which is a valuable feature of the asynchronous demodulator when very short preambles are used in protocols, such as MBus. The received signal strength indicator (RSSI) provides a measure of the signal strength received on the tuned channel. The resolution of the RSSI is 0.5 dB. This high-resolution RSSI enables accurate channel power measurements for clear channel assessment (CCA), carrier sense (CS), and listen before talk (LBT) functionality. A comprehensive programmable packet handler including key features of Silicon Labs' EZMAC is integrated to create a variety of communication topologies ranging from peer-to-peer networks to mesh networks. The extensive programmability of the packet header allows for advanced packet filtering, which, in turn enables a mix of broadcast, group, and point-to-point communication. A wireless communication channel can be corrupted by noise and interference, so it is important to know if the received data is free of errors. A cyclic redundancy check (CRC) is used to detect the presence of erroneous bits in each packet. A CRC is computed and appended at the end of each transmitted packet and verified by the receiver to confirm that no errors have occurred. The packet handler and CRC can significantly reduce the load on the system microcontroller allowing for a simpler and cheaper microcontroller.

5.2.1. Automatic Gain Control (AGC)

The AGC algorithm is implemented digitally using an advanced control loop optimized for fast response time. The AGC occurs within a single bit or in less than 2 μ s. Peak detectors at the output of the LNA and PGA allow for optimal adjustment of the LNA gain and PGA gain to optimize IM3, selectivity, and sensitivity performance.

5.2.2. Auto Frequency Correction (AFC)

Frequency mistuning caused by crystal inaccuracies can be compensated for by enabling the digital automatic frequency control (AFC) in receive mode. There are two types of integrated frequency compensation: modem frequency compensation, and AFC by adjusting the PLL frequency. With AFC disabled, the modem compensation can correct for frequency offsets up to ± 0.25 times the IF bandwidth. When the AFC is enabled, the received signal will be centered in the pass-band of the IF filter, providing optimal sensitivity and selectivity over a wider range of frequency offsets up to ± 0.35 times the IF bandwidth. When AFC is enabled, the preamble length needs to be long enough to settle the AFC. As shown in Table 13 on page 22, an additional byte of preamble is typically required to settle the AFC.

5.2.3. Image Rejection and Calibration

Since the receiver utilizes a low-IF architecture, the selectivity will be affected by the image frequency. The IF frequency is 468.75 kHz (Fxtal/64), and the image frequency will be at 937.5 kHz below the RF frequency. The native image rejection of the Si4362 is 35 dB. Image rejection calibration is available in the Si4362 to improve the image rejection to more than 55 dB. The calibration is initiated with the IRCAL API command. The calibration uses an internal signal source, so no external signal generator is required. The initial calibration takes 250 ms, and periodic re-calibration takes 100 ms. Re-calibration should be initiated when the temperature has changed more than 30 °C.

For high-band (868/915M), the following commands should be used for image calibration:

- IRCAL 56 10 FA F0—course calibration (150 ms)
- IRCAL 13 10 FA F0—fine calibration (100 ms)

For low-band (430–510 MHz) the following commands should be used for image calibration:

- IRCAL 56 10 CA F0—course calibration (150 ms)
- IRCAL 13 10 CA F0—fine calibration (100 ms)

5.2.4. Received Signal Strength Indicator

The received signal strength indicator (RSSI) is an estimate of the signal strength in the channel to which the receiver is tuned. The RSSI measurement is done after the channel filter, so it is only a measurement of the desired or undesired in-band signal power. There are two different locations for reading the RSSI value and different options for configuring the RSSI value. The fastest method for reading the RSSI is to configure one of the four fast response registers for a latched RSSI value. The fast response registers can be read in 16 SPI clock cycles with no requirement to wait for CTS. The RSSI value may also be read out of the GET_MODEM_STATUS command. In this command, both the current RSSI and the latched RSSI are available. Reading the RSSI in the GET_MODEM_STATUS command takes longer than reading the RSSI out of the fast response register. After the initial command, it will take 33 µs for CTS to be set and then the four or five bytes of SPI clock cycles to read out the respective current or latched RSSI values.

The RSSI configuration options are set in the MODEM_RSSI_CONTROL API property. The RSSI values may be latched and stored based on the following events: preamble detection, sync detection, or four bit times measured after the start of RX mode. The requirement for four bit times is determined by the delay and settling through the modem and digital channel filter. In MODEM_RSSI_CONTROL, the RSSI may be defined to update every bit or averaged and updated every four bits. If RSSI averaging over four bits is enabled, the latched RSSI value after the start of RX mode will be seven bits to allow for the averaging. The latched RSSI values are cleared when entering RX mode so they may be read after the packet is received or after dropping back to standby mode. If the RSSI value have been cleared by the start of RX but not latched yet, a 0 value will be read if it is attempted to be read.

The RSSI value read by the API could be translated to dBm by the following linear equation:

RSSI(in dBm) = (RSSI_value /2) - RSSIcal

RSSIcal in the formula depends on the matching network, modem settings and external LNA gain (if present). The RSSIcal value can be obtained by a simple calibration with a signal generator connected at the antenna input. Without external LNA, the value of RSSIcal is around 130 \pm 30.

During the reception of a packet, it may be useful to detect if a secondary interfering signal (desired or undesired) arrives. To detect this event, a feature for RSSI jump detection is available. While receiving a packet, if the RSSI changes by a programmed amount, an interrupt or GPIO can be configured to notify the host. The level of RSSI increase (jump) is programmable through the MODEM_RSSI_JUMP_THRESH API property. If an RSSI jump is detected, the modem may be programmed to automatically reset so that it may lock onto the new stronger signal. The packet handler cannot be automatically reset by this feature. If this feature is being used in conjunction with the packet handler, the host will need to manually reset the receiver to reset the packet handler. The configuration and options for RSSI jump detection are programmed in the MODEM_RSSI_CONTROL2 API property. By default, RSSI jump detection is not enabled.

The RSSI values and curves may be offset by the MODEM_RSSI_COMP API property. The default value of 7'h32 corresponds to no RSSI offset. Setting a value less than 7'h32 corresponds to a negative offset, and a value higher than 7'h32 corresponds to a positive offset. The offset value is in 1 dB steps. For example, setting a value of 7'h3A would correspond to a positive offset of 8 dB.

Clear channel assessment (CCA) or RSSI threshold detection is also available. An RSSI threshold may be set in the MODEM_RSSI_THRESH API property. If the RSSI value is above this threshold, an interrupt or GPIO may notify the host. Both the latched version and asynchronous version of this threshold are available on any of the GPIOs. Automatic fast hopping based on RSSI is available. See "5.3.1.2. Automatic RX Hopping and Hop Table".

5.3. Synthesizer

An integrated Sigma Delta ($\Sigma\Delta$) Fractional-N PLL synthesizer capable of operating over the bands from 142–175, 283–350, 420–525, and 850–1050 MHz for the Si4362. Using a $\Sigma\Delta$ synthesizer has many advantages; it provides flexibility in choosing data rate, deviation, channel frequency, and channel spacing. The nominal reference frequency to the PLL is 30 MHz, but any XTAL frequency from 25 to 32 MHz may be used. The modem configuration calculator in WDS will automatically account for the XTAL frequency being used. The PLL utilizes a differential LC VCO with integrated on-chip inductors. The output of the VCO is followed by a configurable divider, which will divide the signal down to the desired output frequency band.

5.3.1. Synthesizer Frequency Control

The frequency is set by changing the integer and fractional settings to the synthesizer. The WDS calculator will automatically provide these settings, but the synthesizer equation is shown below for convenience. The APIs for setting the frequency are FREQ_CONTROL_INTE, FREQ_CONTROL_FRAC2, FREQ_CONTROL_FRAC1, and FREQ_CONTROL_FRAC0.

$$\mathsf{RF_channel} = \left(\mathsf{fc_inte} + \frac{\mathsf{fc_frac}}{2^{19}}\right) \times \frac{2 \times \mathsf{freq_xo}}{\mathsf{outdiv}}(\mathsf{Hz})$$

Note: The fc_frac/2¹⁹ value in the above formula has to be a number between 1 and 2.

Outdiv	Lower (MHz)	Upper (MHz)
24	142	175
12	284	350
8	420	525
4	850	1050

Table 14. Output Divider (Outdiv) Values for the Si4362

5.3.1.1. EZ Frequency Programming

In applications that utilize multiple frequencies or channels, it may not be desirable to write four API registers each time a frequency change is required. EZ frequency programming is provided so that only a single register write (channel number) is required to change frequency. A base frequency is first set by first programming the integer and fractional components of the synthesizer. This base frequency will correspond to channel 0. Next, a channel step size is programmed into the FREQ_CONTROL_CHANNEL_STEP_SIZE_1 and FREQ_CONTROL_CHANNEL_STEP_SIZE_0 API registers. The resulting frequency will be:

RF Frequency = Base Frequency + Channel × Stepsize

The second argument of the START_RX is CHANNEL, which sets the channel number for EZ frequency programming. For example, if the channel step size is set to 1 MHz, the base frequency is set to 900 MHz with the INTE and FRAC API registers, and a CHANNEL number of 5 is programmed during the START_RX command, the resulting frequency will be 905 MHz. If no CHANNEL argument is written as part of the START_RX command, it will default to the previous value. The initial value of CHANNEL is 0; so, if no CHANNEL value is written, it will result in the programmed base frequency.

5.3.1.2. Automatic RX Hopping and Hop Table

The transceiver supports an automatic hopping feature that can be fully configured through the API. This is intended for RX hopping where the device has to hop from channel to channel and look for packets. Once the device is put into the RX state, it automatically starts hopping through the hop table if the feature is enabled.

The hop table can hold up to 64 entries and is maintained in firmware. Each entry is a channel number; so, the hop table can hold up to 64 channels. The number of entries in the table is set by RX HOP TABLE_SIZE API. The specified channels correspond to the EZ frequency programming method for programming the frequency. The receiver starts at the base channel and hops in sequence from the top of the hop table to the bottom. The table will wrap around to the base channel once it reaches the end of the table. An entry of 0xFF in the table indicates that the entry should be skipped. The device will hop to the next non 0xFF entry.

There are three conditions that can be used to determine whether to continue hopping or to stay on a particular channel. These conditions are:

- RSSI threshold
- Preamble timeout (invalid preamble pattern)
- Sync word timeout (invalid or no sync word detected after preamble)

These conditions can be used individually, or they can be enabled all together by configuring the RX_HOP_CONTROL API. However, the firmware will make a decision on whether or not to hop based on the first condition that is met.

The RSSI that is monitored is the current RSSI value. This is compared to the threshold, and, if it is above the threshold value, it will stay on the channel. If the RSSI is below the threshold, it will continue hopping. There is no averaging of RSSI done during the automatic hopping from channel to channel. Since the preamble timeout and the sync word timeout are features that require packet handling, the RSSI threshold is the only condition that can be used if the user is in "direct" or "RAW" mode where packet handling features are not used.

Note that the RSSI threshold is not an absolute RSSI value; instead, it is a relative value and should be verified on the bench to find an optimal threshold for the application.

The turnaround time from RX to RX on a different channel using this method is 115 μ s. The time spent in receive mode will be determined by the configuration of the hop conditions. Manual RX hopping will have the fastest turn-around time but will require more overhead and management by the host MCU.

The following are example steps for using Auto Hop:

- 1. Set the base frequency (inte + frac) and channel step size.
- 2. Define the number of entries in the hop table (RX_HOP_TABLE_SIZE).
- 3. Write the channels to the hop table (RX_HOP_TABLE_ENTRY_n)
- 4. Configure the hop condition and enable auto hopping- RSSI, preamble, or sync (RX_HOP_CONTROL).
- 5. Set preamble and sync parameters if enabled.
- 6. Program the RSSI threshold property in the modem using "MODEM_RSSI_THRESH".
- 7. Set the preamble threshold using "PREAMBLE_CONFIG_STD_1".
- 8. Program the preamble timeout property using "PREAMBLE_CONFIG_STD_2".
- 9. Set the sync detection parameters if enabled.
- 10. If needed, use "GPIO_PIN_CFG" to configure a GPIO to toggle on hop and hop table wrap.
- 11. Use the "START_RX" API with channel number set to the first valid entry in the hop table (i.e., the first non 0xFF entry).
- 12. Device should now be in auto hop mode.

5.3.1.3. Manual RX Hopping

The RX_HOP command provides the fastest method for hopping from RX to RX but it requires more overhead and management by the host MCU. Using the RX_HOP command, the turn-around time is 75 µs. The timing is faster with this method than Start_RX or RX hopping because one of the calculations required for the synthesizer calibrations is offloaded to the host and must be calculated/stored by the host, VCO_CNT0. For information about using fast manual hopping, contact customer support.

5.4. Crystal Oscillator

The Si4362 includes an integrated crystal oscillator with a fast start-up time of less than 250 µs. The design is differential with the required crystal load capacitance integrated on-chip to minimize the number of external components. By default, all that is required off-chip is the crystal. The default crystal is 30 MHz, but the circuit is designed to handle any XTAL from 25 to 32 MHz. If a crystal different than 30 MHz is used, the POWER_UP API boot command must be modified. The WDS calculator crystal frequency field must also be changed to reflect the frequency being used. The crystal load capacitance can be digitally programmed to accommodate crystals with various load capacitance requirements and to adjust the frequency of the crystal oscillator. The tuning of the crystal load capacitance is programmed through the GLOBAL_XO_TUNE API property. The total internal capacitance is 11 pF and is adjustable in 127 steps (70 fF/step). The crystal frequency adjustment can be used to compensate for crystal production tolerances. The frequency offset characteristics of the capacitor bank are demonstrated in Figure 8.

Utilizing the on-chip temperature sensor and suitable control software, the temperature dependency of the crystal can be canceled.

A TCXO or external signal source can easily be used in place of a conventional XTAL and should be connected to the XIN pin. It is recommended that the incoming clock signal have a peak-to-peak swing in the range of 600 mV to 1.4 V and ac-coupled to the XIN pin. If the peak-to-peak swing of the TCXO exceeds 1.4 V peak-to-peak, then dc coupling to the XIN pin should be used. The maximum allowed swing on XIN is 1.8 V peak-to-peak. The XO capacitor bank should be set to 0 whenever an external drive is used on the XIN pin. In addition, the POWER_UP command should be invoked with the TCXO option whenever the external drive is used.

6. Data Handling and Packet Handler

6.1. RX FIFOs

A 64-byte FIFOs is integrated into the chip as shown in Figure 9. Reading from command Register 77h reads data from the RX FIFO. The RX FIFO has one programmable threshold, which is programmed by setting the "RX_FIFO_FULL" property. When the incoming RX data crosses the Almost Full Threshold, an interrupt will be generated to the microcontroller via the nIRQ pin. The microcontroller will then need to read the data from the RX FIFO. The RX Almost Full Threshold indication implies that the host can read at least the threshold number of bytes from the RX FIFO at that time. The RX FIFO may be cleared or reset with the "FIFO_RESET" command.

6.2. Packet Handler

When using the FIFOs, automatic packet handling may be enabled for RX mode. The usual fields for network communication, such as preamble, synchronization word, headers, packet length, and CRC, can be configured to be automatically added to the data payload. Automatically adding these fields to the data payload and automatically checking them in RX mode greatly reduces the amount of communication between the microcontroller and the Si4362. It also greatly reduces the required computational power of the microcontroller. The general packet structure is shown in Figure 10. Any or all of the fields can be enabled and checked by the internal packet handler.

The fields are highly programmable and can be used to check any kind of pattern in a packet structure. The general functions of the packet handler include the following:

- Detection/validation of Preamble quality in RX mode (PREAMBLE_VALID signal)
- Detection of Sync word in RX mode (SYNC_OK signal)
- Detection of valid packets in RX mode (PKT_VALID signal)
- Detection of CRC errors in RX mode (CRC_ERR signal)
- Data de-whitening and/or Manchester decoding (if enabled) in RX mode
- Match/Header checking in RX mode

Recomi

Storage of Data Field bytes into FIFO memory in RX mode

For details on how to configure the packet handler, see "AN626: Packet Handler Operation for Si446x RFICs".

7. RX Modem Configuration

The Si4362 can easily be configured for different data rate, deviation, frequency, etc. by using the WDS settings calculator, which generates an initialization file for use by the host MCU.

8. Auxiliary Blocks

8.1. Wake-up Timer and 32 kHz Clock Source

The chip contains an integrated wake-up timer that can be used to periodically wake the chip from sleep mode. The wake-up timer runs from either the internal 32 kHz RC Oscillator, or from an external 32 kHz XTAL.

The wake-up timer can be configured to run when in sleep mode. If WUT_EN = 1 in the GLOBAL_WUT_CONFIG property, prior to entering sleep mode, the wake-up timer will count for a time specified defined by the GLOBAL_WUT_R and GLOBAL_WUT_M properties. At the expiration of this period, an interrupt will be generated on the nIRQ pin if this interrupt is enabled in the INT_CTL_CHIP_ENABLE property. The microcontroller will then need to verify the interrupt by reading the chip interrupt status either via GET_INT_STATUS or a fast response register. The formula for calculating the Wake-Up Period is as follows:

WUT = WUT_M
$$\times \frac{4 \times 2^{WUT_R}}{32,768}$$
 [ms]

The RC oscillator frequency will change with temperature; so, a periodic recalibration is required. The RC oscillator is automatically calibrated during the POWER_UP command and exits from the Shutdown state. To enable the recalibration feature, CAL_EN must be set in the GLOBAL_WUT_CONFIG property, and the desired calibration period should be selected via WUT_CAL_PERIOD[2:0] in the same API property. During the calibration needs to start the 30 MHz XTAL, which increases the average current consumption; so, a longer CAL_PERIOD results in a lower average current consumption. The 32 kHz XTAL accuracy is comprised of both the XTAL parameters and the internal circuit. The XTAL accuracy can be defined as the XTAL initial error + XTAL aging + XTAL temperature drift + detuning from the internal oscillator circuit. The error caused by the internal circuit is typically less than 10 ppm.

API Properties	Description	Requirements/Notes
GLOBAL_WUT_CONFIG	GLOBAL WUT configuration	WUT_EN—Enable/disable wake up timer. WUT_LBD_EN—Enable/disable low battery detect measurement on WUT interval. WUT_LDC_EN: 0 = Disable low duty cycle operation. 1 = RX LDC operation treated as wake up START_RX WUT state is used CAL_EN—Enable calibration of the 32 kHz RC oscillator WUT_CAL_PERIOD[2:0]—Sets calibration period.
GLOBAL_WUT_M_15_8	Sets HW WUT_M[15:8]	WUT_M—Parameter to set the actual wakeup time. See equation above.
GLOBAL_ WUT_M_7_0	Sets HW WUT_M[7:0]	WUT_M—Parameter to set the actual wakeup time. See equation above.
GLOBAL_WUT_R	Sets WUT_R[4:0] Sets WUT_SLEEP to choose WUT state	WUT_R—Parameter to set the actual wakeup time. See equation above. WUT_SLEEP: 0 = Go to ready state after WUT 1 = Go to sleep state after WUT
GLOBAL_WUT_LDC	Sets FW internal WUT_LDC	WUT_LDC—Parameter to set the actual wakeup time. See equation in "8.2. Low Duty Cycle Mode (Auto RX Wake-Up)" on page 34.

Table 15	5. WUT	Specific	Commands	and	Properties
----------	--------	----------	----------	-----	-------------------

Table 16. WUT Related API Commands and Properties

Command/Property	Description	Requirements/Notes		
	WUT Interrupt	Enable		
INT_CTL_ENABLE	Interrupt enable property	CHIP_INT_STATUS_EN—Enables chip status interrupt.		
INT_CTL_CHIP_ENABLE	Chip interrupt enable property	WUT_EN—Enables WUT interrupt.		
32 kHz Clock Source Selection				
GLOBAL_CLK_CFG	Clock configuration options	CLK_32K_SEL[2:0]—Configuring the source of WUT.		
2	WUT Interrupt	Output		
GPIO_PIN_CFG	Host can enable interrupt on WUT expire	GPIOx_MODE[5:0] = 14 and NIRQ_MODE[5:0] = 39.		
	RX Operati	on		
START_RX	START RX when wake up timer expire	START = 1.		

8.2. Low Duty Cycle Mode (Auto RX Wake-Up)

The low duty cycle (LDC) mode is implemented to automatically wake-up the receiver to check if a valid signal is available. It allows low average current polling operation by the Si4362 for which the wake-up timer (WUT) is used. RX LDC operation must be set via the GLOBAL_WUT_CONFIG property when setting up the WUT. The LDC wake-up period is determined by the following formula:

$$LDC = WUT_LDC \times \frac{4 \times 2^{WUT_R}}{32,768} [ms]$$

where the WUT_LDC parameter can be set by the GLOBAL_WUT_LDC property. The WUT period must be set in conjunction with the LDC mode duration; for the relevant API properties, see the wake-up timer (WUT) section.

Figure 11. RX LDC Sequences

The basic operation of RX LDC mode is shown in Figure 12. The receiver periodically wakes itself up to work on RX_STATE during LDC mode duration. If a valid preamble is not detected, a receive error is detected, or an entire packet is not received, the receiver returns to the WUT state (i.e., ready or sleep) at the end of LDC mode duration and remains in that mode until the beginning of the next wake-up period. If a valid preamble or sync word is detected, the receiver delays the LDC mode duration to receive the entire packet. If a packet is not received during two LDC mode durations, the receiver returns to the WUT state at the last LDC mode duration until the beginning of the next wake-up period.

8.3. Temperature, Battery Voltage, and Auxiliary ADC

The Si4362 contains an integrated auxiliary ADC for measuring internal battery voltage, an internal temperature sensor, or an external component over a GPIO. The ADC utilizes a SAR architecture and achieves 11-bit resolution. The Effective Number of Bits (ENOB) is 9 bits. When measuring external components, the input voltage range is 1 V, and the conversion rate is between 300 Hz to 2.44 kHz. The ADC value is read by first sending the GET_ADC_READING command and enabling the inputs that are desired to be read: GPIO, battery, or temp. The temperature sensor accuracy at 25 °C is typically ± 2 °C.

Command Stream

GET_ADC_READIN G Command	7	6	5	4	3	2	1 0
CMD		0x14					
ADC_EN	0	0	0	TEMPERATURE_EN	BATTERY_VOLTAGE_EN	ADC_GPIO_EN	ADC_GPIO_PIN[1:0]
ADC_CFG				UDTIME[3:0]	G	PIO_ATT[3:0]	

Reply Stream

GET_ADC_READING Reply	7	6	5	4 3	2	1	0
СТЅ	CTS[7:0]						
GPIO_ADC	GPIO_ADC[15:8]						
GPIO_ADC	GPIO_ADC[7:0]						
BATTERY_ADC	BATTERY_ADC[15:8]						
BATTERY_ADC	BATTERY_ADC[7:0]						
TEMP_ADC	TEMP_ADC[15:8]						
TEMP_ADC	TEMP_ADC[7:0]						
RESERVED	Reserved						
RESERVED	Reserved						

- Parameters
 - TEMPERATURE_EN

0 = Do not perform ADC conversion of temperature. This will read 0 value in reply TEMPERATURE. 1 = Perform ADC conversion of temperature. This results in TEMP_ADC.

- Temp (°C) = TEMP_ADC[15:0] x 568/2560 297
- BATTERY_VOLTAGE_EN

0 = Don't do ADC conversion of battery voltage, will read 0 value in reply BATTERY_ADC

- 1 = Do ADC conversion of battery voltage, results in BATTERY_ADC. Vbatt = 3*BATTERY_ADC/1280
 ADC_GPIO_EN
 - 0 = Don't do ADC conversion on GPIO, will read 0 value in reply
 - 1 = Do ADC conversion of GPIO, results in GPIO_ADC. Vgpio = GPIO_ADC/GPIO_ADC_DIV where GPIO_ADC_DIV is defined by GPIO_ATT selection.
- ADC_GPIO_PIN[1:0] Select GPIOx pin. The pin must be set as input.
 - 0 = Measure voltage of GPIO0
 - 1 = Measure voltage of GPIO1
 - 2 = Measure voltage of GPIO2
 - 3 = Measure voltage of GPIO3

- UDTIME[7:4] ADC conversion Time = SYS_CLK / 12 / 2^(UDTIME + 1). Defaults to 0xC if ADC_CFG is 0. Selecting shorter conversion times will result in lower ADC resolution and longer times will result in higher ADC resolution.
- GPIO_ATT[3:0] Sets attenuation of gpio input voltage when vgpio measured. Defaults to 0xC if ADC_CFG is 0.
 0x0 = ADC range 0 to 0.8 V. GPIO_ADC_DIV = 2560
 0x4 = ADC range 0 to 1.6 V. GPIO_ADC_DIV = 1280
 0x8 = ADC range 0 to 2.4 V. GPIO_ADC_DIV = 853.33
 0x9 = ADC range 0 to 3.6 V. GPIO_ADC_DIV = 426.66
 0xC = ADC range 0 to 3.2 V. GPIO_ADC_DIV = 640
- Response
 - GPIO_ADC[15:0] ADC value of voltage on GPIO
 - BATTERY_ADC[15:0] ADC value of battery voltage
 - TEMP_ADC[15:0] ADC value of temperature sensor voltage
 - RESERVED[7:0] RESERVED FOR FUTURE USE
 - RESERVED[7:0] RESERVED FOR FUTURE USE

8.4. Low Battery Detector

The low battery detector (LBD) is enabled and utilized as part of the wake-up-timer (WUT). The LBD function is not available unless the WUT is enabled, but the host MCU can manually check the battery voltage anytime with the auxiliary ADC. The LBD function is enabled in the GLOBAL_WUT_CONFIG API property. The battery voltage will be compared against the threshold each time the WUT expires. The threshold for the LBD function is set in GLOBAL_LOW_BATT_THRESH. The threshold steps are in increments of 50 mV, ranging from a minimum of 1.5 V up to 3.05 V. The accuracy of the LBD is $\pm 3\%$. The LBD notification can be configured as an interrupt on the nIRQ pin or enabled as a direct function on one of the GPIOS.

8.5. Antenna Diversity

Rei

To mitigate the problem of frequency-selective fading due to multipath propagation, some transceiver systems use a scheme known as antenna diversity. In this scheme, two antennas are used. Each time the transceiver enters RX mode the receive signal strength from each antenna is evaluated. This evaluation process takes place during the preamble portion of the packet. The antenna with the strongest received signal is then used for the remainder of that RX packet. This chip fully supports antenna diversity with an integrated antenna diversity control algorithm. The required signals needed to control an external SPDT RF switch (such as a PIN diode or GaAs switch) are available on the GPIO pins. The operation of these GPIO signals is programmable to allow for different antenna diversity architectures and configurations. The antdiv[2:0] bits are found in the MODEM_ANT_DIV_CONTROL API property descriptions and enable the antenna diversity mode. The GPIO pins are capable of sourcing up to 5 mA of current; so, it may be used directly to forward-bias a PIN diode if desired. The antenna diversity algorithm will automatically toggle back and forth between the antennas until the packet starts to arrive. The recommended preamble length for optimal antenna selection is 8 bytes.

9. Pin Descriptions: Si4362

Pin	Pin Name	I/0	Description
1	SDN	I	Shutdown Input Pin. 0–VDD V digital input. SDN should be = 0 in all modes except Shutdown mode. When SDN = 1, the chip will be completely shut down, and the contents of the registers will be lost.
2	RXp	I	Differential RF Input Pins of the LNA.
3	RXn	I	See application schematic for example matching network.
4	NC		No Connect. Not connected internally to any circuitry.
5	NC		No Connect. Not connected internally to any circuitry.
6	VDD	VDD	+1.8 to +3.6 V Supply Voltage Input to Internal Regulators. The recommended VDD supply voltage is +3.3 V.
7	NC		No Connect. Not connected internally to any circuitry.
8	VDD	VDD	+1.8 to +3.6 V Supply Voltage Input to Internal Regulators. The recommended VDD supply voltage is +3.3 V.
9	GPIO0	I/O	General Purpose Digital I/O.
10	GPI01	I/O	May be configured through the registers to perform various functions including: Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery Detect, AntDiversity control, etc.
	nIRQ	Ο	General Microcontroller Interrupt Status Output. When the Si4362 exhibits any one of the interrupt events, the nIRQ pin will be set low = 0. The Microcontroller can then determine the state of the interrupt by reading the interrupt status. No external resistor pull-up is required, but it may be desirable if multiple interrupt lines are connected.

eerial data clock function for the e Si4362 on positive edge transi- ernal control registers.
ernal control registers.
erial data stream for the 4-line
Select/Enable function for the
or leave floating when driving
or connect to an external source
rform various functions, including DR, Wake-Up timer, Low Battery
Si4362 supplies the RF and circuit ant that a good solder connection the ground plane of the PCB

10. Ordering Information

Part Number ^{1,2}	Description	Package Type	Operating Temperature
Si4362-Bxx-FM	ISM EZRadioPRO Receiver	QFN-20 Pb-free	-40 to 85 °C
Notes: 1. Add an "(R)" at the e 2. For Bxx, the first "x"	end of the device part number to denote tape and re indicates the ROM version, and the second "x" indic	el option. cates the FW version in OT	P.
		\langle	
		N	
		20	
	6		
	200		
_			
×			
Or			

11. Package Outline: Si4362

Figure 13 illustrates the package details for the Si4362. Table 17 lists the values for the dimensions shown in the illustration.

Dimension	Min	Nom	Max	
A	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
A3		0.20 REF		
b	0.18	0.25	0.30	
D		4.00 BSC		
D2	2.45	2.60	2.75	0
e		0.50 BSC		X
E		4.00 BSC		
E2	2.45	2.60	2.75	
L	0.30	0.40	0.50	
aaa		0.15	$\langle \mathcal{O} \rangle$	
bbb		0.15		
CCC	0.10			
ddd		0.10		
eee		0.08		
Notos:				

Table 17. Package Dimensions

Notes:

- 1. All dimensions are shown in millimeters (mm) unless otherwise noted.
- Dimensioning and tolerancing per ANSI Y14.5M-1994.
 This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VGGD-8.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. <u>A</u>

12. PCB Land Pattern: Si4362

Figure 14 illustrates the PCB land pattern details for the Si4362. Table 18 lists the values for the dimensions shown in the illustration.

Table 18.	PCB Land	Pattern	Dimensions
-----------	----------	---------	------------

Symbol	Millimeters	
	Min	Max
C1	3.90	4.00
C2	3.90	4.00
E	0.50	REF
X1	0.20	0.30
X2	2.55	2.65
Y1	0.65	0.75
Y2	2.55	2.65

Notes:

- General
 - 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
 - 2. This land pattern design is based on IPC-7351 guidelines.

Solder Mask Design

 All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- **6.** The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
- 7. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.

Card Assembly

- 8. A No-Clean, Type-3 solder paste is recommended.
- **9.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for small body components.

Reco

13. Top Marking

13.1. Si4362 Top Marking

13.2. Top Marking Explanation

Rec

Mark Method	YAG Laser	
Line 1 Marking	Part Number	43621B = Si4362 Rev 1B ¹
Line 2 Marking	TTTTT = Internal Code	Internal tracking code. ²
Line 3 Marking	YY = Year WW = Workweek	Assigned by the Assembly House. Corresponds to the last significant digit of the year and workweek of the mold date.

Notes:

- 1. The first letter after the part number is part of the ROM revision. The last letter indicates the firmware revision.
- 2. The first letter of this line is part of the ROM revision.

tor we have a second

DOCUMENT CHANGE LIST

Revision 0.2 to Revision 0.3

- Updated Table 3, "Synthesizer AC Electrical Characteristics¹," on page 5.
 - Updated Synthesizer Frequency Range (Si4362) minimum value from "425" to "420".
 - Updated Synthesizer Frequency Resolution test condition from "425 to 525" to "420 to 525".
- Updated Table 4, "Receiver AC Electrical Characteristics¹," on page 6.
 - Updated RX Frequency Range (Si4362) minimum value from "425" to "420".
- Updated "2. Functional Description" on page 12.
 - Updated Si4362 frequency band range from "425 to 525" to "420 to 525".
- Updated "5.3. Synthesizer" on page 27.
 - Updated operating band range from "425 to 525" to "420 to 525".
- Updated Table 14, "Output Divider (Outdiv) Values for the Si4362," on page 27.
 - Changed "425" to "420".
- Removed Table 15.

Revision 0.3 to Revision 0.4

- Recommended Updated Table 4, "Receiver AC Electrical Characteristics¹," on page 6.
 - Removed second parameter row.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com