Description

The DPS1135 is part of a family of power switches optimized for USB power delivery and other hot-swap applications. Through the analog interface, an exception status is reported, and several functions can be programmed: current limit, overvoltage protection, and output voltage ramping up. The fast role-swap function, which complies with the requirements defined in the USB Power Delivery Specification Release 3.0, V1.0a, is implemented. It is compatible to many popular USB Type-C® applications.

This device is designed to operate between 4.5 V and 24 V . It offers fast short-circuit response time to ensure system robustness. The integrated port-discharge function allows the voltage levels at the input and output ports to be discharged to meet the requirements of the USB Power Delivery Specification. Comprehensive fault detection and recovery mechanisms are provisioned to enable applications, which are subjected to heavy capacitive loads and the risk of short circuit. These mechanisms include: reverse voltage and current blocking, input overvoltage protection, output overcurrent, short-circuit protection, and over temperature shut-down. In addition, the rise time of output voltage can be adjusted to minimize in-rush current and to ensure system stability. Before any exception condition is notified via the low-active FAULTB signal, a deglitch of 7 ms is applied to prevent false triggering.

The DPS1135 is housed in the low-profile and space-saving V-QFN4040-17 package, which is manufactured with environmentally friendly material.

Features

- Wide Operating Voltage Range: 4.5 V to 24 V
- One-Channel Power Switch with Integrated Adjustable Current \& Voltage Limits
- Ability to Discharge the Input and Output Ports either Individually or Simultaneously via Two External Control Pins
- Fast Short-Circuit Response Time at $2 \mu \mathrm{~s}$
- Comprehensive Built-In Fault Detection and Recovery Mechanisms like Input Under Voltage Lock-Out, Reverse Voltage and Current Blocking, Thermal Shutdown, Overcurrent and Short-Circuit Protection
- RDS(ON) of Embedded MOSFET at $30 \mathrm{~m} \Omega$
- Adjustable DV/DT Control at Start-Up
- Fault Reporting (FAULTB) with Blanking Time at 7 ms Typical
- Fast Role Swap Supported
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Pin Assignments

Applications

- Notebook, Desktop, AIO PCs, Servers, and Tablets
- Docking Stations, Universal and Multimedia Hubs
- FPTVs, PC Monitors
- Set-Top Boxes, Residential Gateways, Storage Devices
- Power Protection in Industrial and Automotive Applications

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.

DPS1135

Typical Application Circuit

Pin Descriptions

Pin Number	Pin Name	Type	
$1,2,3$	IN	P	Power Supply and Input Port.
4	EN	I	Enable Input; Active High. 0 = Device Off $1=$ Device On This pin must not be left floating.
5	FRS	I	Fast Role Swap Control. This pin enables the Fast Role Swap sequence defined in the USB Power Delivery Specification Release 3.0, V1.0a.
6	GND	GND	Device Ground.

DPS1135

Functional Block Diagram

Absolute Maximum Ratings (@ $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified) (Note 4)

Symbol	Parameter	Rating	Unit
Vin, Vout	Voltage Range of Power IN and OUT Pins	-0.3 to 30	V
Ven	Voltage Range of EN Pin	-0.3 to 30	V
$\mathrm{V}_{1 / \mathrm{O}}$	Voltage Range of Other Pins (FRS, VREG, DISC1, DISC2, FAULTB, IMON, DV/DT, ILIM, VLIM)	-0.3 to 6	V
lout	Load Current Range	6.5	A
Ioutpulse	Load Current Range (RILIM $=6.8 \mathrm{k} \Omega$, 1s Pulse, Duty Cycle $=1 \%$)	14	A
TJ	Operating Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature	+260	${ }^{\circ} \mathrm{C}$
Tst	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (HBM), JESD22-A114	2	kV
	Charge Device Model (CDM)	1	

Note: 4. These are stress ratings only. Operation outside the absolute maximum ratings can cause device failure. Operation at the absolute maximum rating for extended periods may reduce device reliability.

Thermal Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified) (Note 5)

Symbol	Parameter	Rating	Unit
P_{D}	Power Dissipation	1.7	W
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction-to-Ambient	58.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
RөJC	Thermal Resistance, Junction-to-Case	12.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: \quad 5. Device mounted on FR-4 substrate PCB, $20 z$ copper, with $1 " \times 1$ " copper pad layout.

Recommended Operating Conditions (@ $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Min	Max	Unit
VIN	Input Supply Voltage	4.5	24	V
Vout	Output Voltage	0	24	V
lout	Output Load Current	0	5	A
CIN	Input Capacitance	10	-	$\mu \mathrm{F}$
Cout	Output Capacitance	1	100	$\mu \mathrm{F}$
VEN	Input Voltage on EN Pin	0	28	V
Vfrs, Vdisc1, Vdisc2	Input Voltage on FRS, DISC1, DISC2 Pins	0	5.5	V
RvLIm	VLIM Resistance	51	270	k Ω
RILIM	ILIM Resistance	15	200	$\mathrm{k} \Omega$

Electrical Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{CIN}_{\mathrm{I}}=\mathrm{Cout}=10 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{EN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FRS }}=0 \mathrm{~V}, \mathrm{CDVVID}^{2}=1 \mathrm{nF}$,
RvLIM $=240 \mathrm{k} \Omega$, RILIM $=27 \mathrm{k} \Omega$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ.	Max	Unit
Bias Supply						
Vreg	Regulated Voltage	VIN $=5 \mathrm{~V}$	-	4.9	-	V
		$\mathrm{VIN}=12 \mathrm{~V}$	-	5.1	-	
		$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}$	-	5.2	-	
Vuvlo	VIN Under Voltage Lock-Out Threshold	VIN Rising	3.2	3.6	4.0	V
Vuvir	VIN Under Voltage Lock-Out Threshold Hysteresis	VIN Falling	-	250	-	mV
ISHDN	Shut-Down Current (Disabled)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	-	-	15	
		$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	-	-	25	
lQ	Quiescent Current (Enabled)	$\mathrm{VIN}=5 \mathrm{~V}$, No Load	-	1.5	1.9	mA
		VIN $=12 \mathrm{~V}$, No Load	-	1.7	2.1	
		VIN $=24 \mathrm{~V}$, No Load	-	2.2	2.6	
MOSFET						
Rds(ON)	Switch ON Resistance	V IN $=5 \mathrm{~V}$	-	29	36	$\mathrm{m} \Omega$
		$\mathrm{VIN}=12 \mathrm{~V}$	-	29	36	
		V IN $=24 \mathrm{~V}$	-	30	36	
ILKgSRC	OUT Leakage Current in OFF State, Sourcing	$\mathrm{V}_{\text {En }}=0 \mathrm{~V}$, V Out $=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
ILKGSNK	OUT Leakage Current in OFF State, Sinking	$\mathrm{VIN}=3.3 \mathrm{~V}, \mathrm{~V}$ EN $=0 \mathrm{~V}$, Vout $=5 \mathrm{~V}$	-	-	15	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}$	-	-	25	
		$\mathrm{VIN}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}$ OUT $=24 \mathrm{~V}$	-	-	40	
Enable Control						
$V_{\text {ENL }}$	EN Threshold Voltage Low	VEN Falling	-	-	0.4	V
VENH	EN Threshold Voltage High	VEN Rising	1.4	-	-	
IEN	EN Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
Output Ramping Control						
IDVIDT	DV/DT Sourcing Current	$\mathrm{V}_{\text {DVID }}=0 \mathrm{~V}$	-	1	-	$\mu \mathrm{A}$
Gdv/DT	DV/DT to OUT Gain	$\Delta \mathrm{Vout} \mathrm{/} \Delta \mathrm{~V}$ DV/DT, Guaranteed by Design	-	12	-	V/V

Electrical Characteristics (continued) ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=\mathrm{Cout}=10 \mu \mathrm{~F}, \mathrm{~V}_{E N}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FRS }}=0 \mathrm{~V}$,
Covidt $=1 \mathrm{nF}$, RvLIM $=240 \mathrm{k} \Omega$, RLIIM $=27 \mathrm{k} \Omega$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Output Timing						
toon	Output Turn-On Delay Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$ to 3.3 V	-	0.2	-	ms
		$\mathrm{VIN}=12 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=0 \mathrm{~V}$ to 3.3 V	-	0.2	-	
		$\mathrm{VIN}_{\text {I }}=24 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$ to 3.3 V	-	0.2	-	
t_{R}	Output Turn-On Rise Time	$\mathrm{V}^{\prime} \mathrm{F}=5 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=0 \mathrm{~V}$ to 3.3 V	-	0.3	-	ms
		$\mathrm{VIN}=12 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=0 \mathrm{~V}$ to 3.3 V	-	0.8	-	
		$\mathrm{VIN}=24 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=0 \mathrm{~V}$ to 3.3 V	-	1.6	-	
tDofF	Output Turn-Off Delay Time	$\mathrm{VIN}=5 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=3.3 \mathrm{~V}$ to 0 V	-	1	-	$\mu \mathrm{s}$
		$\mathrm{VIN}=12 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=3.3 \mathrm{~V}$ to 0 V	-	2	-	
		$\mathrm{VIN}_{\text {I }}=24 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {EN }}=3.3 \mathrm{~V}$ to 0 V	-	4	-	
$t_{\text {F }}$	Output Turn-Off Fall Time	$\mathrm{VIIN}^{2}=5 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {EN }}=3.3 \mathrm{~V}$ to 0 V	-	10	-	$\mu \mathrm{s}$
		$\mathrm{VIN}=12 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=3.3 \mathrm{~V}$ to 0 V	-	25	-	
		$\mathrm{VIN}=24 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}, \mathrm{~V}$ EN $=3.3 \mathrm{~V}$ to 0 V	-	50	-	
Fast Role Swap (FRS) Control and Timing						
Vfrst	FRS Threshold Voltage Low	VFRS Falling	-	-	0.4	V
$\mathrm{V}_{\text {FRSH }}$	FRS Threshold Voltage High	$V_{\text {FRS }}$ Rising	1.4	-	-	
IfRS	FRS Input Leakage Current	$\mathrm{VIN}=5 \mathrm{~V}, \mathrm{~V}_{\text {FRS }}=5 \mathrm{~V}$	-	-	7	$\mu \mathrm{A}$
trRS_ON	FRS On Time	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, A Single Positive Pulse Width on FRS and $\mathrm{V}_{\mathrm{FRSH}}=3.3 \mathrm{~V}$, Guaranteed by Design	600	-	-	$\mu \mathrm{s}$
tDON_FRS	Output Turn-On Delay Time with FRS	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \text {, Cout }=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {FRS }}=3.3 \mathrm{~V} \text { to } 0 \mathrm{~V} \text {, } \\ & 50 \% \text { Falling Edge of } \mathrm{V} \text { FRS to } 90 \% \text { Rising } \\ & \text { Edge of Vout, Guaranteed by Design } \end{aligned}$	-	-	60	$\mu \mathrm{s}$
Discharge Control on IN and OUT Ports						
RDISC1 / RDISC2	IN / OUT Discharge Resistance	$\mathrm{V}_{\mathrm{DISC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DISC} 2}=5 \mathrm{~V}$	-	105	-	Ω
		V ${ }_{\text {dISC1 }}=3.3 \mathrm{~V}, \mathrm{~V}$ DISC2 $=3.3 \mathrm{~V}$	-	115	-	Ω
VdISC1L / Vdiscza	DISC1 / DISC2 Threshold Voltage Low	VDISC1 / Visce Falling	-	-	0.4	V
VDISC1H / VDisc2H	DISC1 / DISC2 Threshold Voltage High	VDISC1 /VDISC2 Rising	1.4	-	-	V
Overcurrent Protection						
VILIM	ILIM Bias Voltage	RILIM $=50 \mathrm{k} \Omega$	-	1	-	V
ILIM	Current Limit, 1A	RILIM $=100 \mathrm{k} \Omega$	0.9	1.05	1.20	A
	Current Limit, 2A	RILIM $=50 \mathrm{k} \Omega$	1.8	2	2.2	
	Current Limit, 3A	RILIM $=33.3 \mathrm{k} \Omega$	2.76	3	3.24	
	Current Limit, 5A	RILIM $=20 \mathrm{k} \Omega$	4.6	5	5.4	
Ifastrip	Fast-Trip Threshold	Guaranteed by Design	-	$\begin{gathered} 1.125 \times \\ \text { ILIM }+1.8 \\ \hline \end{gathered}$	-	A
Current Monitoring Output						
Vimon	Current Monitoring Output Voltage	-	-	-	4.5	V
GImon	IMON to OUT Current Gain	IImon / lout	-	10	-	$\mu \mathrm{A} / \mathrm{A}$
Overvoltage Protection						
IvLIM	VLIM Sourcing Current	$\mathrm{VIN}=5 \mathrm{~V}, \mathrm{RVLIM}=54.9 \mathrm{k} \Omega$	-	10	-	$\mu \mathrm{A}$
Vovprth	Input Overvoltage Threshold, Rising	RvLIM $=54.9 \mathrm{k} \Omega$, VIIN Rising	-	6	-	V
		RVLIM $=240 \mathrm{k}$, V VIN Rising	-	24.5	-	
Vovpfth	Input Overvoltage Threshold, Falling	RvLIM $=54.9 \mathrm{k} \Omega$, V V IN Falling	-	5.5	-	
		RvLIM $=240 \mathrm{k} \Omega$, VIN Falling	-	24	-	

Electrical Characteristics (continued) ($@ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=4.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=\mathrm{Cout}^{2}=10 \mu \mathrm{~F}, \mathrm{~V}_{\text {EN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FRS }}=0 \mathrm{~V}, \mathrm{CDVIDT}^{2}=$ 1 nF, RvLIM $=240 \mathrm{k} \Omega$, RILIM $=27 \mathrm{k} \Omega$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Reverse-Voltage Protection						
VRVPFth	VIN - Vout Threshold Entering into Reverse Protection	VIN - Vout Falling	-	-30	-	mV
VRVPrth	Vin - Vout Threshold Exiting from Reverse Protection	VIn - Vout Rising	-	0	-	
trvpto	Reverse Protection Response Time	-	-	2	-	us
Fault Flag (FAULTB): Active-Low						
Rfaultb	FAULTB Pull-Down Resistor	$\mathrm{VIN}_{\mathrm{N}}=7 \mathrm{~V}$, RVLIM $=54.9 \mathrm{k} \Omega$, $\mathrm{IFAULTB}=10 \mathrm{~mA}$ Sinking	-	25	-	Ω
ILkgaultb	FAULTB Leakage Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, RvLIM $=54.9 \mathrm{k} \Omega$, $\mathrm{V}_{\text {FAULT }}=5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
tblankfaultb	FAULTB Blanking Time	$\mathrm{VIN}=5 \mathrm{~V}$, RVLIM $=54.9 \mathrm{k} \Omega, \mathrm{V}$ FAULTB $=5 \mathrm{~V}$	-	7	-	ms
Thermal Shutdown						
TSHDN	Thermal Shutdown Threshold	-	-	+165	-	${ }^{\circ} \mathrm{C}$
Thrs	Thermal Shutdown Hysteresis	-	-	+20	-	

 unless otherwise specified.)

Quiescent Current vs. Input Voltage

OUT Leakage Sinking Current vs. Output Voltage

OUT Discharge Resistance vs. Ambient Temperature

Performance Characteristics (continued) (@ $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{CIIN}_{\mathrm{IN}}=\mathrm{Cout}_{\mathrm{o}}=10 \mu \mathrm{~F}, \mathrm{~V}_{\text {EN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FRS }}=0 \mathrm{~V}, \mathrm{CDVIDT}=1 \mathrm{nF}$, RILIM $=27 \mathrm{k} \Omega$, unless otherwise specified.)

EN Turn ON with a 1.6Ω Load at 5 V

EN Turn ON with a 7Ω Load at 20 V
VIN $=20 \mathrm{~V}$, RLOAd $=6.7 \Omega$

EN Turn OFF with a 1.6Ω Load at 5 V

$$
\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=1.6 \Omega
$$

EN Turn OFF with a 7Ω Load at 20 V
$V_{I N}=20 \mathrm{~V}$, RLOAD $=6.7 \Omega$

Performance Characteristics (continued) ($@ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{CIN}_{\mathrm{IN}}=$ Cout $=10 \mu \mathrm{~F}, \mathrm{~V}_{\text {EN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FRS }}=0 \mathrm{~V}$, $\mathrm{CDVIDT}^{2}=1 \mathrm{nF}$, $R_{\text {ILIM }}=27 \mathrm{k} \Omega$, unless otherwise specified.)

Input Overvoltage Protection and Recovery
$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ to 7 V then back to 5 V, RVLIM $=56 \mathrm{k} \Omega$, RLOAD $=1 \mathrm{k} \Omega$

OUT Always Short to Ground at 20V

Overcurrent Recovery at 5V
$\mathrm{V} \operatorname{IN}=5 \mathrm{~V}$, RLOAD $=1.2 \Omega$ to 100Ω

Reverse-Voltage Response
VIN $=5 \mathrm{~V}$, Supply 24 V to OUT Port

DPS1135

Application Information

General Description

The DPS1135 is a one-channel power switch designed to meet the input and output voltage/current requirement, which are common with many hot-pluggable serial interfaces found in the computing and consumer electronics equipment. For example, the DPS1135 is compatible to the USB Power Delivery Specification Release 3.0, V1.0a and many popular USB Type-C® applications.

Start-Up Time

An external capacitor connected from the DV/DT pin to GND defines the slew rate of the output voltage at power-on:

$$
\mathrm{dV} \text { Out } / \mathrm{dt}=(\mathrm{IDV/DT} / \mathrm{CDV/DT}) \times \operatorname{GDV/DT}
$$

Where:

- dVout / dt is the desired output slew rate in V / ms
- IDV/DT is in $\mu \mathrm{A}$ and is $1 \mu \mathrm{~A}$ typical
- Cdv/Dt is the ramp-up control setting capacitor in nF
- Gdv/DT is the gain of DV/DT to OUT and Gdv/DT $=12$

The total ramp time tdv/DT of Vout increasing from 0 to VIN can be calculated using:

$$
\operatorname{tDV} / D T=8.3 \times 10^{-2} \times V_{I N} \times C_{D V / D T}
$$

Where:

- tDV/DT is the total ramp time in ms
- \quad VIN is in V
- Covidt is in nF

Choosing a proper value for the capacitor CDv/DT ensures that the device is turned ON with the preset ramp-up imposed over the output voltage. The in-rush current at power-up is limited by the regulated output voltage ramp or the limited current setting.

Cout ($\mu \mathrm{F}$)	RILIM (k)	ILIm_min (A)	Iload_max (A)	Codv/dt_min (nF)	Start-Up Time (ms)		
					$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	V IN $=12 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$
10	30	3.10	5	0.51	0.21	0.51	0.85
10	30	3.10	3	0.51	0.21	0.51	0.85
10	43	2.09	2	0.51	0.21	0.51	0.85
10	82	1.04	1	0.51	0.21	0.51	0.85
100	18	3.10	5	3.6	1.50	3.60	6.00
100	30	3.10	3	3.6	1.50	3.60	6.00
100	43	2.09	2	3.6	1.50	3.60	6.00
100	82	1.04	1	3.6	1.50	3.60	6.00

Input Over Voltage Protection (OVP)

The voltage at the IN port is monitored continuously. Whenever voltage at the IN port is found to be larger than the Vovprth value, the built-in Over Voltage Protection (OVP) fault-handling mechanism is triggered. The internal power MOSFET turns off to protect the downstream equipment connected. The Vovprth value is determined by:

Vovprth $=0.1 \times \operatorname{RvLIM}+0.5$
Where:

- Vovprth is in V
- RvLim is in $\mathrm{k} \Omega$
- $51 \mathrm{k} \Omega \leq$ RVLIM $\leq 270 \mathrm{k} \Omega$

Application Information (continued)

Reverse-Voltage Protection (RVP)

The voltage difference, [VIN - Vout], between the IN and OUT ports is monitored continuously. Once the voltage difference drops below the $V_{\text {RVPFTH }}$ level, the device immediately turns OFF the internal power MOSFET to prevent the current flowing from the opposite direction. When the reverse-voltage condition is no longer valid, i.e. [$\left.\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right]$ becomes greater than the $\mathrm{V}_{\text {RVPRTH }}$ level, the internal power MOSFET turns ON.

Over Temperature Protection (OTP)

During overload conditions, the output voltage drops with the limited current lum. It results in the increasing junction temperature TJ_{J} with the increased power consumption on device. When Ts reaches to the thermal shutdown threshold Tshdn, the internal power MOSFET is turned OFF. The internal MOSFET is turned ON again once the condition [T_{J} < (TSHDN - THYs)] occurs.

Over Current Protection (OCP)

The output current is monitored continuously. Whenever the output current lout is found to be larger than the luim value by over $2 \mu \mathrm{~s}$, the embedded overcurrent protection (OCP) fault-handling mechanism is triggered. This trigger results in the output current clamping at the ILIM value at hundreds of ms later, and the voltage dropping at OUT port. The ILim value is set by Rilim.

$$
\text { ILIM = } 100 \text { / RILIM }
$$

Where:

- Ilim is in A
- RILIM is in $k \Omega$
- $18 \mathrm{k} \Omega \leq$ RILIM $\leq 200 \mathrm{k} \Omega$

RILIM (k $\boldsymbol{\Omega}$)	ILIM (A)		
	Min	Typ	Max
200	0.50	0.55	0.7
100	0.90	1.05	1.20
66.7	1.35	1.50	1.65
50	1.80	2.00	2.20
40	2.25	2.50	2.75
33.3	2.76	3.00	3.24
28.6	3.22	3.50	3.78
25	3.68	4	4.32
20	4.6	5	5.4

Short-Circuit Protection (SCP)

There are two behaviors to protect device under short-circuit conditions. One is fast-trip current detection. When the output current exceeds the fast-trip threshold IFASTRIP, the device switches OFF the internal MOSFET.

$$
\text { IFASTRIP }=1.125 \times \text { ILIM }+1.8
$$

Where:

- Ifastrip and Ilim is in A

Another is low output voltage detection. During heavy overload or short-circuit conditions, the output current is limited to lum, and the output voltage drops quickly. When the output voltage drop is exceeded the capability of MOSFET, the power switch turns OFF. The device is operating in auto-retry mode, and the cycle time is around 128 ms .

Application Information (continued)

Adjustable Current Monitoring Output (IMON)

A 100pF capacitor and a resistor RIMON connected in parallel between the IMON pin and GND generate an average current monitor output voltage VIMON, which is proportional to the load current flowing through the device,

$$
\text { VIMON }=10^{-3} \times \text { GIMON } \times \text { RIMON } \times \text { IOUT }
$$

Where:

- GImon is the ratio of the IMON to the load current in $\mu \mathrm{A} / \mathrm{A}$ and GIMON = 10
- Vimon is in V
- Rimon is in $k \Omega$
- Iout is in A

The resistor RImON must be chosen to ensure that the voltage at the IMON pin is less than 4.5 V under the maximum load current IILIM For example, if RIMON is selected as $50 \mathrm{k} \Omega$, there will be a 0.5 V output on IMON pin at 1 A load, and $\mathrm{VIMON}=1.5 \mathrm{~V}$ at 3 A load. Connecting this IMON pin to an ADC can help to monitor the current information of a system.

Fault Response

An external pull-up resistor is required. The device generates a warning flag whenever one of the following fault conditions becomes valid: input overvoltage, reverse-voltage, over temperature, short-circuit, over current, ILIM pin short to ground. After a deglitch time-out of 7 ms , the low-active FAULTB signal is asserted. The FAULTB signal remains at low, and the internal power MOSFET remains OFF until the device exits from the exception status.

Support of Fast Role Swap (FRS)

The DPS1135 is designed to support the Fast Role Swap (FRS) operation. This allows the system to change its role from being a power consumer to being a power provider within the time limit defined in the USB Power Delivery Specification Release 3.0 V1.0a. Irrespective of the voltage level at the EN pin, the relevant FRS control circuit inside the device is enabled at the rising edge of any positive pulse appearing at the FRS pin. When the pulse width (tFRs_on) is found to be larger than $600 \mu \mathrm{~s}$, the internal power MOSFET shall be turned ON within $60 \mu \mathrm{~s}$ from the falling edge of the pulse in the absence of the reverse-voltage condition. At the end of the $60 \mu \mathrm{~s}$, the voltage level at the OUT port shall be of 90% of the voltage level at the IN port. Thereafter, while a subsequent rising edge at the EN pin shall always be ignored, the occurrence of a falling edge shall disable the device. After the device shuts down, it will not resume proper operation until a rising edge appears at either the EN pin or the FRS pin.

Figure 1. FRS Control Sequence for Fast Role Swap, Power Switch ON at Falling Edge of FRS Signal after Exiting RVP Condition

Application Information (continued)

Figure 2. FRS Control Sequence for Fast Role Swap, Power Switch ON when Exiting RVP Condition after FRS is Triggered (Falling Edge)

Discharge Function

To facilitate the various applications envisioned by the system designers, the input or output port can be discharged via two external controls: DISC1 and DISC2. The internal discharge resistor at each port is approximately 100Ω. The discharge paths are OFF by default with an internal 1 M) pull-down resistor between DISC1 (or DISC2) and GND. The settings are shown in the table below.

DISC1	DISC2	Description
0	0	Discharge Function Disabled
0	1	OUT Port is Discharged Until the Pin DISC2 is Pulled Low
1	0	IN Port is Discharged Until the Pin DISC1 is Pulled Low
1	1	Both IN and OUT Ports are Discharged Simultaneously

Schottky Diode for Protection of Current Surge

When a cable is hot plugged in/out of the USB-C connector behind where the OUT port of the DPS1135 is connected, a large ground current can be seen at the OUT port of the DPS1135. When the far end of a connected cable is short to ground, the OUT port of the DPS1135 could also see a large ground current. With the Schottky diode, SBR3U40P1, populated as close as possible to the USB-C connector, no ground current can go through the DPS1135 to cause false operation.

DPS1135

Application Information (continued)

PCB Layout Consideration

1. Place the input/output capacitors CIN and Cout as close as possible to the IN and OUT pins.
2. The power traces, including the power ground, the VIN trace, and the Vout trace, must be kept direct, short and wide.
3. Place the resistors and capacitors (RvLim, Rilim, Rimon, Cimon, $^{\text {Covidt, and } C_{\text {Vreg }} \text {) near the device pins. }}$
4. Connect the signal ground to the GND pin, and keep a single connection from GND pin to the power ground behind the input or output capacitors.
5. For better power dissipation, via holes are recommended to connect the exposed pad's landing area to a large copper polygon on the other side of the PCB. The copper polygons and exposed pad of SRC (common source nodes of internal power MOSFET) must not be connected to any of the signal and power grounds on the PCB.

Figure 3. Suggested PCB Layout

Ordering Information (Note 6)

FIA: V-QFN4040-17
13: 13" Tape \& Reel

Part Number	Marking ID	Reel Size (inches)	Tape Width (mm)	13" Tape and Reel	
				Quantity	Part Number Suffix
DPS1135FIA-13	DPS1135	13	12	$4,000 /$ Tape \& Reel	-13

Note: 6. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

YY: Year
WW: Week 01 to 52;
52 Represents 52 and 53 Week

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.
V-QFN4040-17

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.
V-QFN4040-17

Dimensions	Value (in mm)
\mathbf{C}	0.500
\mathbf{G}	0.150
\mathbf{X}	0.350
$\mathbf{X 1}$	1.350
$\mathbf{X 2}$	2.975
$\mathbf{X 3}$	2.850
$\mathbf{X 4}$	3.825
$\mathbf{X 5}$	1.300
\mathbf{Y}	0.600
$\mathbf{Y 1}$	2.350
$\mathbf{Y 2}$	2.600
$\mathbf{Y 3}$	4.300
$\mathbf{Y 4}$	1.300

Mechanical Data

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: NiPdAu Finish, Solderable per MIL-STD-202, Method 208④
- Weight: 0.0375 grams (Approximate)

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated
www.diodes.com

