

LNB Supply with Tone Repeater/Synthesizer and Programmable Cable Drop Compensation

GENERAL DESCRIPTION

This device is a high efficiency boost power supply which converts 12V nominal input to 14V/19V nominal output, plus a linear regulation stage for tone signal transmission. It can repeat the external 22kHz tone input symmetrically or synthesize a 22kHz tone signal upon external on/off control.

Pulsing on its EN initiates -1V/+0.4V drop compensation, making it suitable for where external surge absorbing devices are used at the output and for long cable installation.

The SGM41286 is available in Green TDFN-3×3-8L and SOIC-8 (Exposed Pad) packages. It operates over an ambient temperature range of -40°C to +85°C.

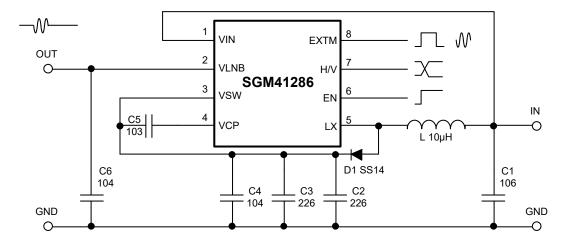
FEATURES

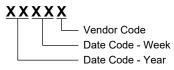
- 7V to 14V Input Voltage
- 500mA 14V/19V Output
- DiSEqC 1.X Compatible
- Programmable -1V/+0.4V Drop Compensation
- High Efficiency Low Head Room Architecture
- Acoustic Noise Free Low Power Operation
- Automatic Tone Repeater or Tone Synthesizer
- LDO Output and Low Out-of-Band Noise
- Internal Short-Safe Over-Current Protection
- Internal Over-Temperature Protection
- 200ms Current Limit Loading Surge Window
- Available in Green TDFN-3×3-8L and SOIC-8 (Exposed Pad) Packages
- -40°C to +85°C Operating Temperature Range

APPLICATIONS

STB Satellite Receiver
TV Satellite Receiver
PC Card Satellite Receiver

TYPICAL APPLICATION




Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM41286 -	TDFN-3×3-8L	-40°C to +85°C	SGM41286YTDB8G/TR	SGM 41286DB XXXXX	Tape and Reel, 4000
	SOIC-8 (Exposed Pad)	-40°C to +85°C	SGM41286YPS8G/TR	SGM 41286YPS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS& HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{IN}	0.3V to 22.5V
LX, VCP	0.3V to 30V
VSW	0.3V to 25.5V
EN, H/V, EXTM	0.3V to 6V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
VLNB to GND, HBM	8000V
All Rest Pins to GND, HBM	4000V
CDM	2000V
MM	400V
Surge Immunity, 10µs/700µs, ±Impulse	40V

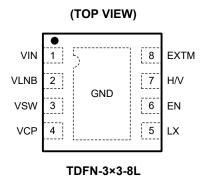
RECOMMENDED OPERATING CONDITIONS

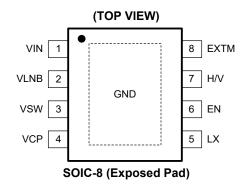
Supply Voltage Range	7V to 14V
Operating Temperature Range	40°C to +85°C
Operating Junction Temperature Range	-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	TYPE (1)	FUNCTION
1	VIN	Р	Power Input for Internal Circuit.
2	VLNB	0	Output for LNB Powering. Connect with a 100nF decoupling capacitor.
3	VSW	0	Input for Powering Output Stage.
4	VCP	0	Charge Pump Storage Output for Internal Use. Connect with a 10nF storage capacitor.
5	LX	0	Switch Node of Boost. Connect with one end of a power inductor.
6	EN	I	Enable Input. Pull up to 1.1V ~ 6V logic high to enable chip function.
7	H/V	I	VLNB Output Voltage Selection Input. Pull up to 1.1V ~ 6V logic high for 19V nominal output; pull down or leave it open for 14V nominal output.
8	EXTM	ı	External 22kHz Tone Input and Internal Tone Synthesizer Enable Input. If a 22kHz pulse string is applied, symmetric pulse string is sent to VLNB to superpose over its output after first pulse in the string; if input stays high for over 46µs, an internal 22kHz is sent for output.
Exposed Pad	GND	G	Ground of Chip Internal Circuit.

NOTE: 1. P: power, I: input, O: output, G: ground.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 12V, V_{EN} = 3V, C_{IN} = 10\mu F, C_{VSW} = 22\mu F \times 2, L = 10\mu H$ and Full = -40°C to +85°C, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
OPERATION CHARACTERISTIC								
Supply Voltage	V _{OPM}		Full	7	12	14	V	
Under-Voltage Lockout Release Voltage	UVLOr	V _{IN} rising	+25°C		4.5	4.8	V	
Shutdown Supply Current	IQ	EN = 0	+25°C		60	80	μA	
Operation Supply Current	I _{OP}	EN = 1, H/V = 0, I _{OUT} = 0mA	+25°C		4	5.5	mA	
Boost Switching Frequency	fswm	No load	+25°C		22		kHz	
Boost Switching Frequency	fsw ₁		+25°C	1.27	1.41	1.55	MHz	
	V14	H/V = 0, I _{OUT} = 500mA	+25°C	13.65	14	14.35	.,	
VLNB Output Voltage	V19	H/V = 1, I _{OUT} = 500mA	+25°C	18.5	19	19.5	V	
5 0 15: " 5"	14PSRR1k	1kHz, H/V = 0, V _{PP} = 200mV	+25°C		-58			
Power Supply Rejection Ratio	19PSRR1k	1kHz, H/V = 1, V _{PP} = 200mV	+25°C		-50		dB	
Line De maletien	14V _{LINEREG}	V _{IN} = 11V to12V, I _{OUT} = 500mA, H/V = 0	+25°C		0.01		0/ 0/	
Line Regulation	19V _{LINEREG}	V _{IN} = 11V to12V, I _{OUT} = 500mA, H/V = 1	+25°C		0.01		- %/V	
Linear Regulator Dropout Voltage	V_{RRM}		+25°C		600		mV	
Short Circuit Current Limit	I _{SHRT}		+25°C		3		Α	
Over-Current Limit	I _{oc}		+25°C		750		mA	
Output Current	I _{OUT}		+25°C		500		mA	
Over-Current Blanking Time	t _{OCBLK}		+25°C		186		ms	
Over-Current Retry Time	t _{RETRY}		+25°C		744		ms	
Count of Over-Current Retry Times	C _{RETRY}		+25°C		8		-	
Line Drop Compensation Voltage	DCV	3 EN pulses	+25°C		-1		V	
	DCV	4 EN pulses	+25°C		0.4		V	
Efficiency (No Tone)	n	H/V = 0, I _{OUT} = 500mA	+25°C		89.5		%	
	η	H/V = 1, I _{OUT} = 500mA	+25°C		89		70	
Efficiency (Tone)	n-	H/V = 0, I _{OUT} = 500mA	+25°C		87.7		%	
Efficiency (Tone)	ητ	H/V = 1, I _{OUT} = 500mA	+25°C		87.5		70	
OVER-TEMPERATURE PROTECTION								
Over-Temperature Shutdown	T _{OT}				160		°C	
Over-Temperature Protection Hysteresis	T_{OTHYS}				30		°C	
LOGIC SIGNALS			1			1		
	V _{TL}		Full			0.4		
Logic High Threshold Level	V _{TH}	EN, H/V, EXTM	Full	1.1			V	
Logic Input Current	I _{EN}		+25°C		0.1	1	μA	
H/V Internal Pull-Down Resistance	R _{H/V}		+25°C		750		kΩ	
EXTM Internal Pull-Down Resistance	R _{EXTM}		+25°C		250		kΩ	
TIMING			ı		I			
Power Blanking Time	t _{PONBLK}		+25°C		93		ms	
Delay Time for Tone Starting after	t _{ENDLY}		+25°C		2.9		ms	
Enable Delay Time for Output Starting after							mc	
Enable Delay Time for Line Drop Out	t _{ONDLY}		+25°C		23.3		ms	
Compensation after End of EN Pulses	t _{PROGDLY}		+25°C		2.9		ms	
Delay Time for Output Stopping after Disable	t_{OFFDLY}		+25°C		23.3		ms	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = 12V, V_{EN} = 3V, C_{IN} = 10\mu F, C_{VSW} = 22\mu F \times 2, L = 10\mu H$ and Full = -40°C to +85°C, $T_{A} = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Detection Time for Internal Synthesized Tone Signal	t _{SYNDLY}		+25°C		46		μs
SYNTHESIZED TONE							
Frequency of Internal Synthesized Tone Signal	f _{22k}		+25°C		22		kHz
Tone Amplitude	V_{PPTONE}		+25°C		600		mV
Tone Duty Cycle	D		+25°C		50		%
Tone Rise Time	t _R		+25°C		5		μs
Tone Fall Time	t _F		+25°C		5		μs
EN PULSES							
Minimum On Time between Two EN Pulses	t _{SH}		+25°C		30		μs
Minimum Off Time of EN Pulse	t _{SL}		+25°C		30		μs
Delay Time for Sending EN Pulses after Enable	t _{E2S}		+25°C		2.9		ms
Detection Time for End of EN Pulses	t _{EOS}		+25°C		2.9		ms

FUNCTIONAL BLOCK DIAGRAM

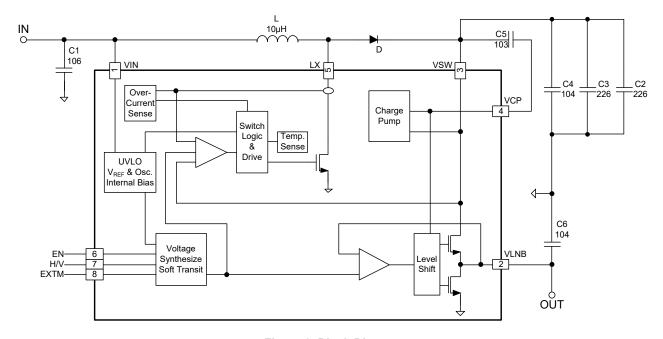


Figure 2. Block Diagram

ESSENTIAL SEQUENCE

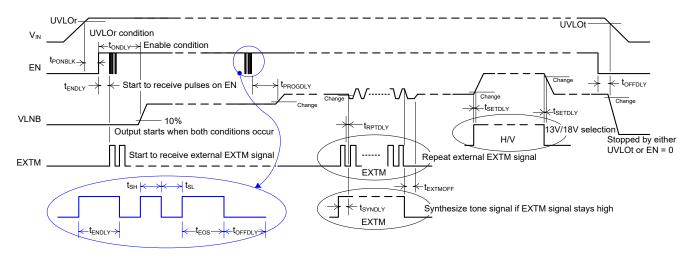
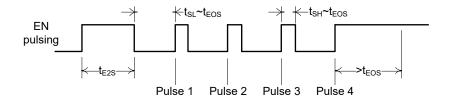
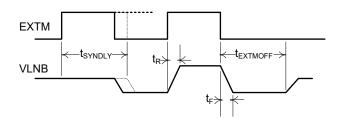
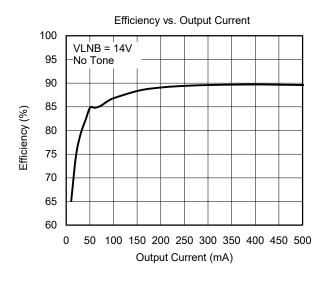



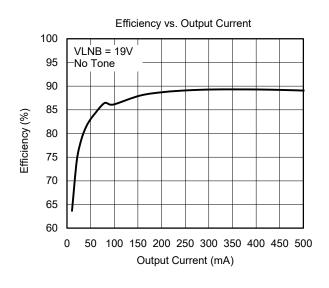
Figure 3. Essential Sequence Timings

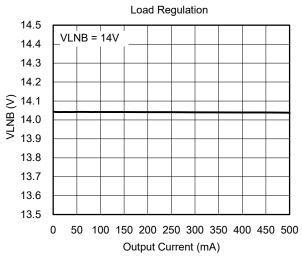
CONTROLS AND LOGIC DIAGRAMS

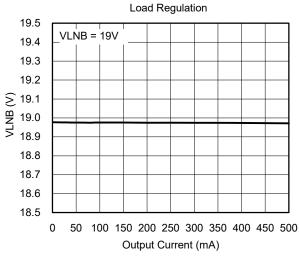

EN Pulsing and Counting

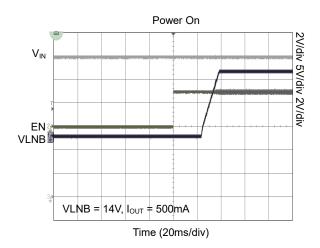
Pulse Counts to Output Status

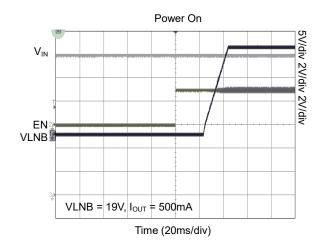

COUNTS	DESCRIPTION	
0	Ignored. Keep its original output status.	
1	Ignored. Keep its original status.	
2	eset to no drop compensation status.	
3	Apply -1V drop compensation to the normal output voltage.	
4	Apply +0.4V drop compensation to the normal output voltage.	
> 4	Ignored. Keep its original status. Counting overflow is kept until t _{PROGDLY} times out.	

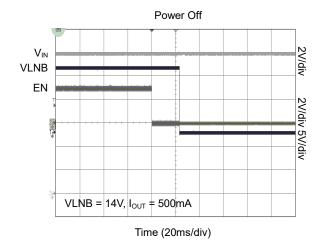

EXTM Signal Timing

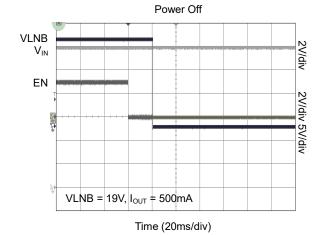


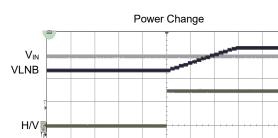

TYPICAL PERFORMANCE CHARACTERISTICS

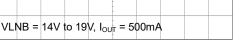

 $V_{IN} = 12V$, $C_{IN} = 10\mu F$, $C_{VSW} = 22\mu F \times 2$, $L = 10\mu H$ and $T_A = +25^{\circ}C$, unless otherwise noted.



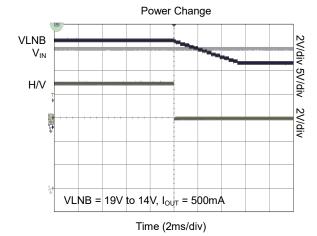


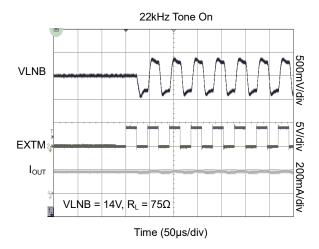


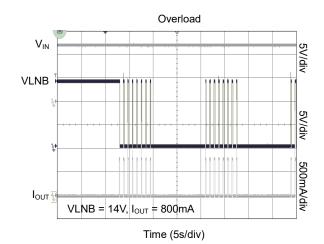



TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} = 12V, C_{IN} = 10 μ F, C_{VSW} = 22 μ F × 2, L = 10 μ H and T_A = +25 $^{\circ}$ C, unless otherwise noted.







2V/div 2V/div

Time (2ms/div)

FUNCTION, OPERATION AND APPLICATION

The SGM41286 cascades a high efficient boost and a linear regulator to generate two selectable 14V/19V output, for powering and controlling the antenna unit. With an internal synthesizer and an embedded controller, the SGM41286 modulates its output voltage, and transmits control signal over the cable, in compliance with the specifications defined in the DiSEqC, the Digital Satellite Equipment Control Bus, in either repeater mode or synthesizer mode.

Charge Pump

Generates a supply voltage above the internal tracking regulator output to drive the linear regulator control.

Overload Handling

If the LNB output current > 750mA and lasting for 200ms, or output current > 3A and lasting for $30\mu s$, the converter will shut down for 800ms and then retry to start. After 8 retries, the converter will shut down for 12s and then retry again.

Thermal Protection

When the junction temperature exceeds +160°C, the part will be shut down. Once the junction temperature is cooled enough, typically +130°C, the part will restart automatically.

The DiSEqC Levels

A 22kHz tone signal is superimposed at the LNB output voltage as a carrier for DiSEqC command. This tone signal can be generated by feeding an external 22kHz clock at the EXTM pin. It can also be generated with its internal tone generator gated by control logic. The output stage of the regulator facilitates a push-pull circuit, so even at zero loading the tone at the output is still clear of distortion.

The SGM41286 only has circuit for signal transmission, which satisfies the level DiSEqC 1.X and those backwards.

Repeater or Synthesizer

The synthesizer controller circuit in the SGM41286 detects the level change of the EXTM input. When a rising edge is detected, the controller counts the time for an expected falling edge of 22kHz square wave in t_{SYNDLY} . If the falling does not happen, it steps down the VLNB for about $V_{\text{PPTONE}}/2$, and then modulates the VLNB with local synthesizer's 22kHz; if the falling edge

comes within t_{SYNDLY} , the controller steps down the VLNB output for about $V_{\text{PPTONE}}/2$, and repeat what is seen at the EXTM input.

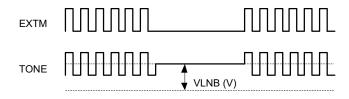


Figure 4. Tone and VLNB

Layout and Surge Absorbing Recommendations and In-Rush Handling

The booster works at high frequency, and careful layout is helpful and even critical for assuring the stable operation, smaller ripples and better EMC performance. See Figure 5 for a reference board layout used for the evaluation, which is proven to be good in the SGM41286's development test.

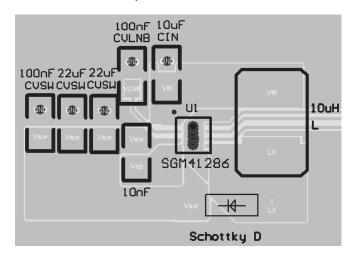


Figure 5. Reference Board Layout

Surging contributes to the operation down-time. Absorbing circuit like the SGM40700 in addition to passive splitter and absorbing circuit is recommended for protection at both the in-door unit and the outdoor unit. See Figure 6 for a reference circuit with surge absorbing and splitter.

If excessive motor spin-stalling current in-rush happens, the SGM41286 stops output for a short while and resumes instantly for a few times. If the over-current does exist after instant retries, the SGM41286 turns into longer interval retries for safety concern.

FUNCTION, OPERATION AND APPLICATION (continued)

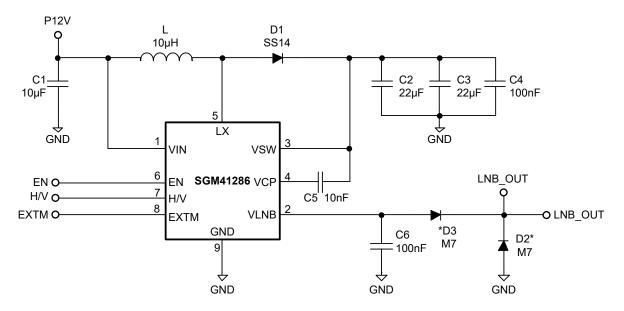
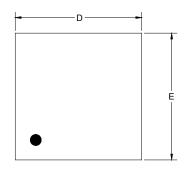
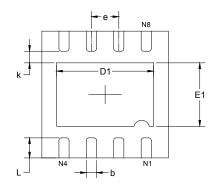


Figure 6. A Reference Circuit with Surge Absorbing Circuit and Splitter

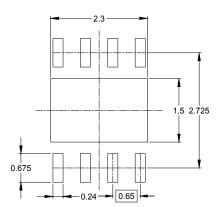

*D2, D3 for high voltage surge test

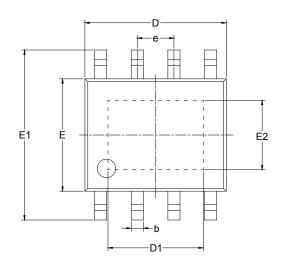

REVISION HISTORY

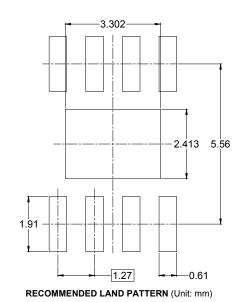
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

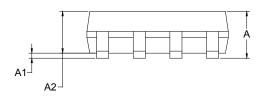
MAY 2019 – REV.A.1 to REV.A.2	Page
Updated Absolute Maximum Ratings	2
APRIL 2019 – REV.A to REV.A.1	Page
Updated Absolute Maximum Ratings	2
Changes from Original (JULY 2017) to REV.A	Page
Changed from product preview to production data	All

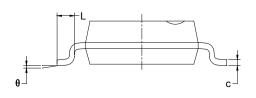
PACKAGE OUTLINE DIMENSIONS TDFN-3×3-8L



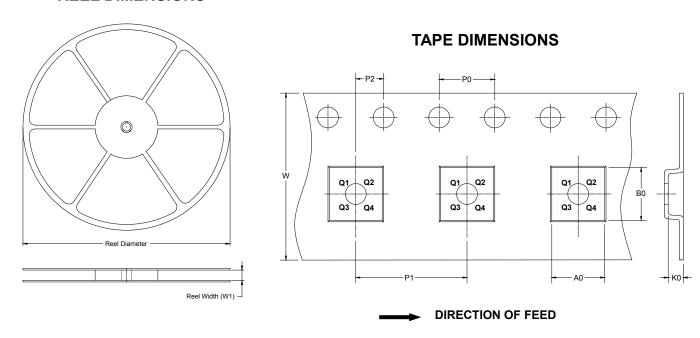

SIDE VIEW




RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008	REF	
D	2.900	3.100	0.114	0.122	
D1	2.200	2.400	0.087	0.094	
E	2.900	3.100	0.114	0.122	
E1	1.400	1.600	0.055	0.063	
k	0.200	MIN	0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.650	0.650 TYP		TYP	
L	0.375	0.575	0.015	0.023	

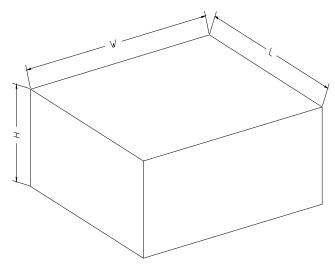
PACKAGE OUTLINE DIMENSIONS SOIC-8 (Exposed Pad)



Symbol	_	nsions meters	-	ensions Inches	
	MIN	MAX	MIN	MAX	
Α		1.700		0.067	
A1	0.000	0.100	0.000	0.004	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
D1	3.202	3.402	0.126	0.134	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.313	2.513	0.091	0.099	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TDFN-3×3-8L	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1
SOIC-8 (Exposed Pad)	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton		
13"	386	280	370	5	000002	