

Dual transil array for ESD protection

General Description

The LESDA6V1LLT1G is a dual monolithic voltage suppressor designed to protect components which are connected to data and transmission lines against ESD. It clamps the voltage just above the logic level supply for positive transients, and to a diode drop below ground for negative transients. It can also work as bidirectionnal suppressor by connecting only pin1 and 2.

Applications

- Computers
- Printers
- Communication systems

It is particularly recommended for the RS232 I/O port protection where the line interface withstands only with 2kV ESD surges.

Features

- 2 Unidirectional Transil functions
- Low leakage current: I_R max< 20 μA at VBR
- 3 00W peak pulse power($8/20 \mu s$)
- High ESD protection level: up to 25 kV
- We declare that the material of product compliance with RoHS requirements and Halogen Free.

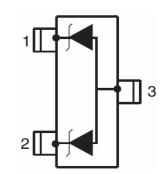
Benefits

- High ESD protection level
- up to 25 kV. High integration.
- Suitable for high density boards.

Complies with the following standards

IEC61000-4-2 Level 4

MIL STD 883c - Method 3015-6 Class 3

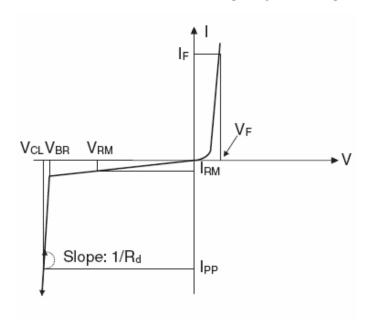

(Human Body Model)

Absolute Ratings (T_{amb}=25°C)

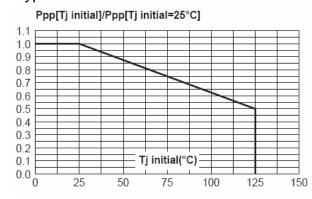
Symbol	Parameter	Value	Units
P _{PP}	Peak Pulse Power (t _p = 8/20μs)	300	W
T _L	Maximum lead temperature for soldering during 10s	260	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C
T _{op}	Operating Temperature Range	-40 to +125	°C
Tj	Maximum junction temperature	150	°C
	Electrostatic discharge		
V_{PP}	MIL STD 883C -Method 3015-6	25	kv
	IEC61000-4-2 air discharge	16	KV
	IEC61000-4-2 contact discharge	9	

LESDA6V1LLT1G

Ordering Information


Device	Marking	Shipping		
LESDA6V1LLT1G	E61	3000/Tape&Reel		
LESDA6V1LLT3G	E61	10000/Tape&Reel		

Jun. 2020 Rev.B 1/5


Electrical Parameter

Symbol	Parameter				
V_{RM}	Stand-off voltage				
V_{BR}	Breakdown voltage				
V_{CL}	Clamping voltage				
I _{RM}	Leakage current				
I _{PP}	Peak pulse current				
αΤ	Voltage temperature coefficient				
V _F	Forward voltage drop				
С	Capacitance				
R _d	Dynamic resistance				

Electrical Characteristics													
Part Numbers	V _{BR}					V _F		V _c @ V _c @	I _{PP}	R_d	α T	С	
	Min.	Max.	I _R	V _{RM}	I _{RM}	Max.	I _F	I _{PP} = 5A (V)	(V)	Max.	Typ. ⁽¹⁾	Max. ⁽²⁾	Typ. 0v bias
	٧	>	mA	V	μД	>	mA	Max.	Max.	Α	mΩ	10 ⁻⁴ /°C	pF
LESDA6V1LLT1G	6.1	7.2	1	5.25	20	1.25	200	11.5	16	18	350	6	140
1. Square pulse I_{PP} =15A, t_p =2.5 μ_S 2. $\triangle V_{BR}$ =aT*(T_{amb} -25°C)* V_{BR} (25°C)													

Typical Characteristics

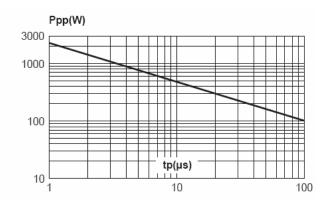
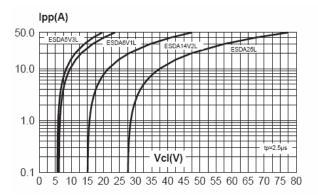
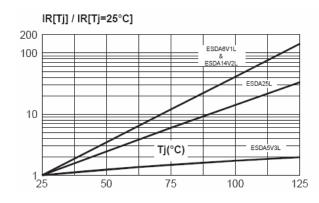
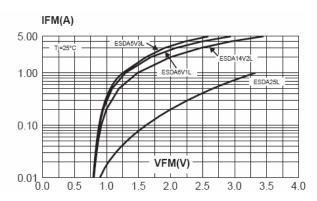



Fig1.Peak power dissipation versus Initial junction temperature

Fig2. Peak pulse power versus exponential pulse duration(T_j initial=25°C)

Jun. 2020 Rev.B 2/5





C(pF) 200 F=1MHz 100 50 ESDA14V2L 20 ESDA25L VR(V) 10 5 10 20 50

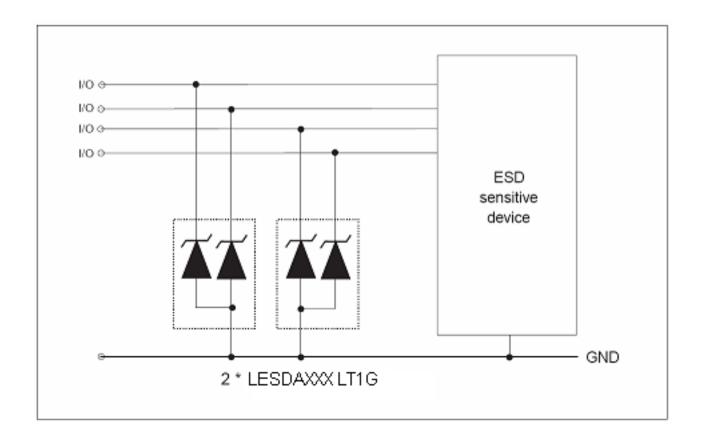
Fig3. Clamping voltage versus peak pulse current(T_i initial=25°C, rectangular Waveform, t_0 =2.5 μ s)

Fig4. Capacitance versus reverse Applied voltage

Versus junction temperature

Fig5.Relative variation of leakage current Fig6. Peak forward voltage drop versus peak forward current

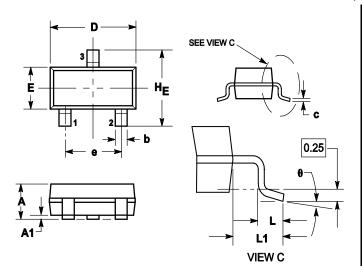
Application Note


Electrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.

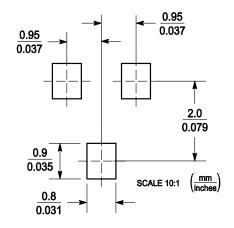
Surface mount TVS arrays offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground. The ESDAxxL array is the ideal board evel protection of ESD sensitive semiconductor components.

The tiny SOT23 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening againt ESD.

Rev.B 3/5 Jun. 2020


Jun. 2020 Rev.B 4/5

OUTLINE AND DIMENSIONS


Notes:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MIL	LIMETE	ERS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1	1.11	0.035	0.04	0.044	
A1	0.01	0.06	0.1	0.001	0.002	0.004	
b	0.37	0.44	0.5	0.015	0.018	0.02	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.9	3.04	0.11	0.114	0.12	
Е	1.20	1.3	1.4	0.047	0.051	0.055	
е	1.78	1.9	2.04	0.07	0.075	0.081	
L	0.10	0.2	0.3	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
H _E	2.10	2.4	2.64	0.083	0.094	0.104	
θ	0°		10°	0°		10°	

SOLDERING FOOTPRINT

Jun. 2020 Rev.B 5/5

DISCLAIMER

- Before you use our Products, you are requested to carefully read this document and fully understand its contents. LRC shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any LRC's Products against warning, caution or note contained in this document.
- All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using LRC's Products, please confirm the latest information with a LRC sales representative.