Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

General Description

The MAX4412 single and MAX4413 dual operational amplifiers are unity-gain-stable devices that combine high-speed performance, low supply current, and ultrasmall packaging. Both devices operate from a single +2.7 V to +5.5 V supply, have rail-to-rail outputs, and exhibit a common-mode input voltage range that extends from 100 mV below ground to within +1.5 V of the positive supply rail.
The MAX4412/MAX4413 achieve a 500MHz -3dB bandwidth and a $140 \mathrm{~V} /$ us slew rate while consuming only 1.7 mA of supply current per amplifier. This makes the MAX4412/MAX4413 ideal for low-power/low-voltage, high-speed portable applications such as video, communications, and instrumentation.
For systems requiring tighter specifications, Maxim offers the MAX4414-MAX4419 family of operational amplifiers. The MAX4414-MAX4419 are laser trimmed versions of the MAX4412/MAX4413 and include compensated and uncompensated devices.
The MAX4412 is available in ultra-small 5-pin SC70 and SOT23 packages, while the MAX4413 is available in a space-saving 8-pin SOT23.

Applications
Battery-Powered Instruments
Portable Communications
Keyless Entry Systems
Cellular Telephones
Video Line Drivers
Baseband Applications

Typical Operating Characteristic

Features
- Ultra-Low 1.7mA Supply Current
- Low Cost
- Single +3V/+5V Operation
- High Speed
500MHz -3dB Bandwidth
50 MHz 0.1 dB Gain Flatness
140V/us Slew Rate
- Rail-to-Rail Outputs
- Input Common-Mode Range Extends Beyond VEE
- Low Differential Gain/Phase: 0.01\%/0.03
- Low Distortion at 5 MHz
-93dBc SFDR
0.003\% Total Harmonic Distortion
- Ultra-Small SC70 and SOT23 Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4412EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC 70	ABH
MAX4412EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23	ADOL
MAX4413EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23	AADR

-Denotes a package containing lead(Pb).
T = Tape and reel.

Pin Configurations

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE).. 6 V
Differential Input Voltage .. 2.5 V
IN_-, IN_+, OUT_..............................(VCC + 0.3V) to (VEE - 0.3V)
Current into Input Pins .. $\pm 20 \mathrm{~mA}$
Output Short-Circuit Duration to V_{CC} or $\mathrm{V}_{\mathrm{EE}} \ldots$. Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5 -Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad .247 mW

8 -Pin SOT23 (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............ 727 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{C C} / 2-0.75 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{R}_{\mathrm{L}}=\infty$ to $\mathrm{V}_{\mathrm{CC}} / 2$, $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage Range	VS	Guaranteed by PSRR test		2.7		5.5	V
Quiescent Supply Current (per amplifier)	Is	$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$			1.7	3.5	mA
		$V_{C C}=+3 \mathrm{~V}$		1.5			
Input Common Mode Voltage Range	VCM	Guaranteed by CMRR test		$\begin{gathered} \mathrm{V}_{\mathrm{EE}}- \\ 0.1 \end{gathered}$		$\begin{gathered} V_{C C}- \\ 1.5 \end{gathered}$	V
Input Offset Voltage	Vos				0.4	9	mV
Input Offset Voltage Temperature Coefficient	TCvos				3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Matching		MAX4413			± 1		mV
Input Bias Current	IB				1.6	4	$\mu \mathrm{A}$
Input Offset Current	los				0.1	0.7	$\mu \mathrm{A}$
Input Resistance	RIN	Differential mode,$-0.04 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{IN}+}-\mathrm{V} / \mathrm{N}_{-}\right) \leq+0.04 \mathrm{~V}$			60		k Ω
		Common mode,$V_{E E}-0.1 V<V_{C M}<V_{C C}-1.5 V$			16		$\mathrm{M} \Omega$
Common Mode Rejection Ratio	CMRR	$V_{E E}-0.1 \mathrm{~V}$ < $\mathrm{V}_{C M}<\mathrm{V}_{C C}-1.5 \mathrm{~V}$		60	94		dB
Open-Loop Gain	Avol	$V_{C C}=+5 \mathrm{~V}$	$\begin{aligned} & +0.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	78	93		dB
			$\begin{aligned} & +0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4.6 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	68	80		
			$\begin{aligned} & +1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4 \mathrm{~V}, \\ & R_{\mathrm{L}}=150 \Omega \end{aligned}$		65		
		$V_{C C}=+3 V$	$\begin{aligned} & +0.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+2.8 \mathrm{~V}, \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$		90		
			$\begin{aligned} & +0.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+2.75 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		78		
			$\begin{aligned} & +0.5 \mathrm{~V} \leq V_{\text {OUT }} \leq+2.5 \mathrm{~V}, \\ & R_{L}=150 \Omega \end{aligned}$		62		

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{C C} / 2-0.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{R}_{\mathrm{L}}=\infty$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Output Voltage Swing	Vout	$V_{C C}=+5 \mathrm{~V}$	$R \mathrm{~L}=10 \mathrm{k} \Omega$	$\mathrm{VCC}-\mathrm{VOH}$		0.085		V
				VOL - VEE		0.015		
			$R \mathrm{~L}=1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$		0.105	0.275	
				VOL - Vee		0.035	0.125	
			$\begin{aligned} & R \mathrm{~L}= \\ & 150 \Omega \end{aligned}$	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{OH}}$		0.385		
				VOL - Vee		0.150		
		$V_{C C}=+3 \mathrm{~V}$	$R \mathrm{~L}=10 \mathrm{k} \Omega$	$\mathrm{VCC}-\mathrm{VOH}$		0.06		
				VOL - VEE		0.01		
			$R \mathrm{~L}=1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{OH}}$		0.075		
				VOL - VEE		0.025		
			$\begin{aligned} & \mathrm{RL}= \\ & 150 \Omega \end{aligned}$	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {OH }}$		0.275		
				VOL - VEE		0.070		
Output Current	IOUT	$\mathrm{R}_{\mathrm{L}}=20 \Omega$ connected to V_{CC} or $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$			± 25	± 75		mA
Output Short-Circuit Current	ISC	Sinking or sourcing				± 85		mA
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$			60	77		dB

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ connected to $\mathrm{VCC} / 2, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Small Signal -3dB Bandwidth	BWSS	VOUT $=100 \mathrm{mV}$ p-p	500		MHz
Large Signal -3dB Bandwidth	BWLS	VOUT $=2 \mathrm{Vp}$-p	30		MHz
Bandwidth for 0.1 dB Flatness	BW0.1dB	VOUT $=100 \mathrm{mV}$ p-p	50		MHz
		VOUT $=2 \mathrm{Vp}$-p	16		
Slew Rate	SR	VOUT $=2 \mathrm{~V}$ step	140		V/us
Rise/Fall Time	$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	VOUT $=2 \mathrm{~V}$ step, 10\% to 90%	14		ns
Settling Time to 0.1\%	tS 1\%	VOUT $=2 \mathrm{~V}$ step	100		ns
Spurious-Free Dynamic Range	SFDR	$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}$	-84		dBc
		$\mathrm{V}_{\text {CC }}=+3 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}$	-93		

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

AC ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ connected to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
$2^{\text {nd }}$ Harmonic Distortion		$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}$		-84		dBc
		$\mathrm{V}_{\text {CC }}=+3 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, VOUT $=1 \mathrm{Vp}-\mathrm{p}$		-93		
$3{ }^{\text {rd }}$ Harmonic Distortion		$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, VOUT $=1 \mathrm{Vp}-\mathrm{p}$		-95		dBc
		$\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, VOUT $=1 \mathrm{Vp}-\mathrm{p}$		-95		
Total Harmonic Distortion	THD	$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}$		0.007		\%
		$\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{fC}=5 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}$		0.003		
Two-Tone, Third-Order Intermodulation Distortion	IP3	$\mathrm{f}_{1}=10 \mathrm{MHz}, \mathrm{f}_{2}=9.9 \mathrm{MHz}$		-67		dBc
Differential Gain Error	DG	$R \mathrm{~L}=150 \Omega$, NTSC	AV $=+1 \mathrm{~V} / \mathrm{V}$	0.03		\%
			$\mathrm{A}^{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$	0.01		
Differential Phase Error	DP	RL $=150 \Omega$, NTSC	$\mathrm{A}^{2}=+1 \mathrm{~V} / \mathrm{V}$	0.13		degrees
			$\mathrm{A} V=+2 \mathrm{~V} / \mathrm{V}$	0.03		
Gain Matching		MAX4413, VOUT $=100 \mathrm{mVp}-\mathrm{p}, \mathrm{f} \leq 10 \mathrm{MHz}$		0.1		dB
Phase Matching		MAX4413, VOUT $=100 \mathrm{mVp}-\mathrm{pf} \leq 10 \mathrm{MHz}$		0.1		degrees
Input Noise-Voltage Density	e_{n}	$\mathrm{f}=10 \mathrm{kHz}$		13		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise-Current Density	In	$\mathrm{f}=10 \mathrm{kHz}$		0.7		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Capacitance	CIN			1.8		pF
Output Impedance	ZOUT	$\mathrm{f}=1 \mathrm{MHz}$		0.7		Ω
Capacitive Load Drive		No sustained oscillations		120		pF
Power-Up 1\% Settling Time (Note 2)				1.2	100	$\mu \mathrm{S}$
Crosstalk	Xtalk	MAX4413, $\mathrm{f}=10 \mathrm{MH}$	OUT = 2Vp-p	-82		dB

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Typical Operating Characteristics
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{F}}=24 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{C}} / 2, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

SMALL-SIGNAL GAIN WITH CAPACITIVE LOAD and 22Ω ISOLATION RESISTOR vs. FREQUENCY

SMALL-SIGNAL GAIN vs. FREQUENCY

SMALL-SIGNAL
GAIN FLATNESS vs. FREQUENCY

SMALL-SIGNAL GAIN WITH CAPACATIVE LOAD
vs. FREQUENCY

LARGE-SIGNAL GAIN FLATNESS
vs. FREQUENCY

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{\mathrm{CM}}=1.75 \mathrm{~V}, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{F}}=24 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{C C} / 2, C_{L}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX4412/MAX4413 CLOSED-LOOP OUTPUT IMPEDANCE vs. FREQUENCY

LARGE-SIGNAL PULSE RESPONSE

50ns/div

LARGE-SIGNAL PULSE RESPONSE

MAX4413 CROSSTALK vs. FREQUENCY

LARGE-SIGNAL PULSE RESPONSE

SMALL-SIGNAL PULSE RESPONSE
($C_{L}=15 \mathrm{pF}$)

MAX4412/MAX4413 SMALL SIGNAL BANDWIDTH vs. LOAD RESISTANCE

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{C M}=1.75 \mathrm{~V}, \mathrm{~A}_{\mathrm{VCL}}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{F}}=24 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{C C} / 2, C_{L}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

COMMON-MODE REJECTION vs. FREQUENCY

HARMONIC DISTORTION vs. FREQUENCY

OUTPUT VOLTAGE SWING vs.
LOAD RESISTANCE

VOLTAGE NOISE DENSITY vs.
FREQUENCY

HARMONIC DISTORTION vs.
OUTPUT VOLTAGE

POWER SUPPLY REJECTION
vs. FREQUENCY

CURRENT NOISE DENSITY vs. FREQUENCY

HARMONIC DISTORTION vs. LOAD RESISTANCE

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{F}}=24 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{C C} / 2, C_{L}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Pin Description

PIN		NAME	
MAX4412	MAX4413		
1	-	OUT	Amplifier Output
-	1	OUTA	Amplifier A Output
-	7	OUTB	Amplifier B Output
2	4	VEE	Negative Power Supply
3	-	IN+	Amplifier Noninverting Input
-	3	INA +	Amplifier A Noninverting Input
-	5	INB+	Amplifier B Noninverting Input
4	-	IN-	Amplifier Inverting Input
-	2	INA-	Amplifier A Inverting Input
-	6	INB-	Amplifier B Inverting Input
5	8	VCC	Positive Power Supply

Detailed Description

The MAX4412/MAX4413 single-supply, rail-to-rail, volt-age-feedback amplifiers achieve 140V/ μ s slew rates and $500 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidths, while consuming only 1.7 mA of supply current per amplifier. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.
Internal feedback around the output stage ensures low open-loop output impedance, reducing gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors.

Rail-to-Rail Outputs, Ground-Sensing Input

The MAX4412/MAX4413 input common-mode range extends from (VEE - 0.1 V) to ($\mathrm{VCC}_{C C}-1.5 \mathrm{~V}$) with excellent common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.
The output swings to within 105 mV of either power-supply rail with a $1 \mathrm{k} \Omega$ load. Input ground sensing and rail-to-rail outputs substantially increase the dynamic range. With a symmetric input in a single +5 V application, the input can swing $3.6 \mathrm{Vp}-\mathrm{p}$, and the output can swing $4.6 \mathrm{Vp}-\mathrm{p}$ with minimal distortion.

Output Capacitive Loading and Stability

The MAX4412/MAX4413 are optimized for AC performance. They are not designed to drive highly reactive loads. Such loads decrease phase margin and may
produce excessive ringing and oscillation. The use of an isolation resistor eliminates this problem (Figure 1). Figure 2 is a graph of the Optimal Isolation Resistor (RISO) vs. Capacitive Load.
The Small Signal Gain vs. Frequency with Capacitive Load and No Isolation Resistor graph in the Typical Operating Characteristics shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. The Small-Signal Gain vs. Frequency with Capacitive Load and 22Ω Isolation Resistor graph shows the effect of a 22Ω isolation resistor on closed-loop response.
Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.
_ Applications Information

Choosing Resistor Values
 Unity-Gain Configuration

The MAX4412/MAX4413 are internally compensated for unity gain. When configured for unity gain, the devices require a 24Ω feedback resistor (RF). This resistor improves $A C$ response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Inverting and Noninverting Configurations

Select the gain-setting feedback (RF_{F}) and input (RG_{G}) resistor values that best fit the application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration $\left(R_{F}=R_{G}\right)$ using $1 \mathrm{k} \Omega$ resistors, combined with 1.8 pF of amplifier input capacitance and 1 pF of PC board capacitance, causes a pole at 114 MHz . Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1 \mathrm{k} \Omega$ resistors to 100Ω extends the pole frequency to 1.14 GHz , but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor.
Note: For high-gain applications where output offset voltage is a consideration, choose Rs to be equal to the parallel combination of R_{F} and R_{G} (Figures 3a and 3b):

Figure 1. Driving a Capacitive Load Through an Isolation Resistor

Figure 2. Isolation Resistance vs. Capacitive Load

$$
R_{S}=\frac{R_{F} \times R_{G}}{R_{F}+R_{G}}
$$

Video Line Driver
The MAX4412/MAX4413 are designed to minimize differential gain error and differential phase error to $0.01 \% /$ 0.03° respectively, making them ideal for driving video loads.

Active Filters The low distortion and high bandwidth of the MAX4412/MAX4413 make them ideal for use in active filter circuits. Figure 4 is a 15 MHz lowpass, multiplefeedback active filter using the MAX4412.

$$
\mathrm{GAIN}=\frac{\mathrm{R} 2}{\mathrm{R} 1}
$$

Figure 3a. Noninverting Gain Configuration

Figure 3b. Inverting Gain Configuration

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

$$
\begin{gathered}
f_{0}=\frac{1}{2 \pi} \times \sqrt{\frac{1}{\mathrm{R} 2 \times \mathrm{R} 3 \times \mathrm{C} 1 \times \mathrm{C} 2}} \\
\mathrm{Q}=\frac{\frac{\mathrm{C} 2}{\sqrt{\mathrm{C} 1 \times \mathrm{C} 2 \times \mathrm{R} 2 \times \mathrm{R} 3}}}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}}
\end{gathered}
$$

Abstract

ADC Input Buffer Input buffer amplifiers can be a source of significant errors in high-speed analog-to-digital converter (ADC) applications. The input buffer is usually required to rapidly charge and discharge the ADC's input, which is often capacitive (see Output Capacitive Loading and Stability). In addition, since a high-speed ADC's input impedance often changes very rapidly during the conversion cycle, measurement accuracy must be maintained using an amplifier with very low output impedance at high frequencies. The combination of high speed, fast slew rate, low noise, and a low and stable distortion overload makes the MAX4412/ MAX4413 ideally suited for use as buffer amplifiers in high-speed ADC applications.

Layout and Power-Supply Bypassing

These amplifiers operate from a single +2.7 V to +5.5 V power supply. Bypass $V_{C C}$ to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close to the pin as possible.
Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. Design the PC board for a frequency greater than 1 GHz to prevent amplifier performance degradation due to board parasitics. Avoid large parasitic capacitances at inputs and outputs. Whether or not a constant-impedance board is used, observe the following guidelines:

- Do not use wire-wrap boards due to their high inductance.
- Do not use IC sockets because of the increased parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Figure 4. Multiple-Feedback Lowpass Filter

Chip Information
MAX4412 TRANSISTOR COUNT: 99
MAX4413 TRANSISTOR COUNT: 192
PROCESS: Bipolar

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
5 SC70	X5-1	$\underline{\mathbf{2 1 - 0 0 7 6}}$
5 SOT23	U5-2	$\underline{\mathbf{2 1 - 0 0 5 7}}$
8 SOT23	K8-5	$\underline{\mathbf{2 1 - 0 0 7 7}}$

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

SIDE VIEW

NOTES

1. ALL DIMENSIDNS ARE IN MILLIMETERS
2. FOOT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM A \& LEAD SURFACE
3. PACKAGE QUTLINE EXCLUSIVE DF MDLD FLASH \& METAL BURR. MDLD FLASH, PROTRUSION DR METAL BURR SHDULD NDT EXCEED 0.25 MM.
4. PACKAGE QUTLINE INCLUSIVE DF SGLDER PLATING.
5. MEETS JEDEC MDI78, VARIATIUN AA.
6. LEADS TI BE CIPLANAR WITHIN 0.10 mm .
7. SULDER THICKNESS MEASURED AT FLAT SECTION DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $11 / 00$ | Initial release | - |
| 1 | $1 / 09$ | Corrected slew rate value | $1,3,9$ |

