Description U2263 is highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter up to 60W output power system. PWM switching frequency is internally fixed at 65KHz. At no load or light load condition, the IC operates in 'burst mode' to minimize switching dissipation. Therefore, lower standby power dissipation and higher conversion efficiency are achieved. Due to very small startup current and low operating current, a big resistor can be used in the startup circuit to minimize standby power dissipation. U2263 offers comprehensive protection functions, including Cycle-by-Cycle current limitation (OCP), over temperature protection (OTP), Over voltage clamp (OVP)and under voltage lockout (UVLO) on VDD. The Gate output is clamped up to 16V to protect the gate of the power MOSFET. #### **Features** - Digit frequency shuffling technology to improve EMI performance. - Leading-edge blanking on current sense input. - Slope compensation. - Burst mode control to improve efficiency and optimize standby power dissipation. - Low startup current and low operating current. - Voltage clamping at gate output - Soft-start to reduce MOSFET stress during power on. - Comprehensive protection functions 1. Under voltage locked with hysteresis (UVLO) on VDD 2. Over voltage protection (OVP) on VDD. - 3. Cycle-by-Cycle current limitation - 4. Current limitation compensation to obtain the same output current in universal ac line input - 5. Over load protection (OLP) - 6. Over temperature protection(OTP) - 300mA drive capability #### **Applications** - Cell Phone Charger - Digital Cameras Charger - Power adaptor - Battery charger # **Application Circuit** Notice: To ensure the reliability of system,R1 resistance is recommended to be 1000 ohms. ## **Pin Assignment & Marking Information** XX: Year code (2018=18) **Y:** Year code (2018=J) WW: Week code (01-52) **ZZZ:** lot number P: Fixed code # **Ordering Information** | Part number | Package | version number | |-------------|---------|----------------| | U2263T | SOT23-6 | | | U2263S | SOP-8 | | | U2263D | DIP-8 | | # **Pin Description** | Symbol | Type | Description | | | | |--------|------|--|--|--|--| | GATE | О | Totem-pole gate dive output for the power MOSFET | | | | | VDD | P | Chip DC power supply pin | | | | | SENSE | I | Current Sense input pin. | | | | | FB | I | Feedback input pin. | | | | | GND | P | Ground. | | | | ## **Block Diagram** ## **Absolute Maximum Rating** | Parameter | Value | Unit | |---|------------|--------------| | VDD supply voltage | 27 | V | | VDD clamp voltage | 29 | V | | VDD clamp current | 10 | mA | | VFB input voltage | -0.3 to7 | V | | VSENSE input voltage to SENSE pin | -0.3 to7 | V | | Min/Max operating junction temperature | -55 to 150 | $^{\circ}$ C | | Operating ambient temperature | -20 to 85 | $^{\circ}$ | | Thermal resistance, Junction to shell SOT23-6 | 250 | °C/W | Note: Stresses above absolute maximum ratings may cause permanents damage to the device. Exposure to absolutely maximum-rated conditions for extended periods may affects device reliability # **Recommended Operating Conditions** | Symbol | Parameter | Min. Max. | Unit | |--------|-------------------------------|-----------|------------| | VDD | Supply Voltage Vcc | 9 to 25.5 | V | | ToA | Operating Ambient Temperature | -20 to 85 | $^{\circ}$ | | ESD-HM | Human Model | 2 | KV | | ESD-MM | Machine Model | 150 | V | # **Electrical Characteristics**($T_A = 25$ °C, if not otherwise noted) | Symbol | Parameter | Conditions | Value | | | Unit | |----------------|-------------------------------------|---|-------|------|------|------| | Symbol | 1 at affecter | Conditions | Min. | Typ. | Max | | | Supply Voltage | ge(V _{dd} Pin) | | | | | | | Idd_startup | VDD start up current | VDD=12.5V | | 3 | 15 | uA | | Idd | VDD operation current | VDD=16V
FB=3V | | | 2.3 | mA | | UVLO(ON) | VDD under voltage lockout enter | | 6.8 | 7.8 | 8.2 | V | | UVLO(OFF) | VDD under voltage lockout exit | | 13 | 13.4 | 16.5 | V | | VDD_OVP | VDD over voltage protection | | 25.5 | | 28 | V | | Voltage Feed | back (FB Pin) | | | 1 | | | | AVCS | PWM input gain | Δ VFB/ Δ VSENSE | | 2 | | V/V | | VFB_open | VFB open loop voltage | | | 5.7 | | V | | IFB_short | FB pin short current | Short FB pin to GND and measure current | 0.6 | 0.8 | 1 | mA | | VFB_burst | Burst mode voltage | | | 1.1 | | V | | VTH_PL | Power limiting FB threshold voltage | | 2 | 3.7 | | V | U2263 # SemiEnergy Limited Current Mode PWM Controller | Power limiting delay | | | 120 | | C | |--|--|--|---|--|---| | time | | | 120 | | mS | | Maximum duty cycle | VDD=18V, FB=2.0V | | 75 | | % | | ing (SENSE Pin) | | | | | | | Leading-edge blanking time | | 120 | 250 | 750 | nS | | Input impedance | | | 40 | | ΚΩ | | Over current threshold voltage | Duty=0 | 0.74 | 0.8 | 0.86 | V | | | | ı | | 1 | | | Normal oscillation frequency | | 62 | 68.5 | 75 | Khz | | Frequency temperature stability | VDD=16V
TA =-20°C to 100°C | | 5 | | % | | Frequency voltage stability | VDD=12V to 25V | | 5 | | % | | Burst mode base frequency | | 17 | 20 | 28 | Khz | | Frequency modulation range /Base frequency | | -5 | | +5 | % | | utput | | | | | | | Output low level | VDD=16V, IO=-20mA | | | 0.8 | V | | Output high level | VDD=16V, IO=20mA | 10 | | | V | | output clamp voltage level | | | 16 | | V | | Output rising time | VDD=16V, CL=1nF | | 220 | | nS | | Output falling time | VDD=16V, CL=1nF | | 70 | | nS | | | time Maximum duty cycle ing (SENSE Pin) Leading-edge blanking time Input impedance Over current threshold voltage Normal oscillation frequency Frequency temperature stability Frequency voltage stability Burst mode base frequency Frequency modulation range /Base frequency utput Output low level Output high level output clamp voltage level Output rising time | time Maximum duty cycle VDD=18V, FB=2.0V ing (SENSE Pin) Leading-edge blanking time Input impedance Over current threshold voltage Normal oscillation frequency Frequency temperature stability TA =-20°C to 100°C Frequency voltage stability Burst mode base frequency Frequency modulation range /Base frequency utput Output low level Output low level Output clamp voltage level Output rising time VDD=16V, IO=20mA | time Maximum duty cycle VDD=18V, FB=2.0V ing (SENSE Pin) Leading-edge blanking time Input impedance Over current threshold voltage Normal oscillation frequency Frequency temperature stability TA =-20°C to 100°C Frequency voltage stability Burst mode base frequency Frequency modulation range /Base frequency utput Output low level VDD=16V, IO=20mA Output high level vDD=16V, IO=20mA Output clamp voltage level Output rising time VDD=16V, CL=1nF | time 120 120 120 120 130 120 130 | time 120 Maximum duty cycle VDD=18V, FB=2.0V 75 ing (SENSE Pin) 120 250 750 Input impedance 40 0.74 0.8 0.86 Normal impedance 0.74 0.8 0.86 Normal oscillation frequency 62 68.5 75 Frequency temperature stability TA =-20°C to 100°C 5 5 Frequency voltage stability VDD=12V to 25V 5 5 Burst mode base frequency 17 20 28 Frequency modulation range /Base frequency -5 +5 Output Output low level VDD=16V, IO=20mA 0.8 Output high level VDD=16V, IO=20mA 10 output clamp voltage level 16 Output rising time VDD=16V, CL=1nF 220 | ### **Application Information** U2263 is a highly integrated PWM controller IC optimized for offline flyback converter up to 60W power system. The burst mode control greatly reduces the standby power consumption and helps the designer easily meet the international energy-saving requirements. ### **Startup Current and Startup Control** Startup current of U2263 is designed to be very low so that VDD could be charged up above UVLO threshold level quickly. Therefore, a large value resistor can be used to minimize the power dissipation in application. For AC/DC adaptor within universal input range, a 2 M Ω , 1/2 W resistor could be connected to VDD capacitor to provide a fast startup and low power dissipation solution. ### **Operating Current** The Operating current of U2263 is lower 2.3mA. Therefore, U2263 can have a good efficiency. #### Frequency shuffling for EMI improvement The frequency Shuffling is implemented in U2263. The oscillation frequency is modulated with a random source so that the harmonic energy is spread out. The spread spectrum minimizes the conduction EMI and therefore reduces system design challenge. ### **Burst Mode Operation** At zero load or light load condition, the main power dissipation in a switching mode power supply is from switching on the MOSFET, the transformer core and the snubber circuit. The magnitude of power dissipation is proportional to the number of switching frequency within certain period. Less switching frequency can reduce the power dissipation. U2263 adjusts the switching frequency according to the loading condition. From light load to no load, the FB voltage drops. While the FB voltage is less than 1.1V, the gate pin output is disabled and kept low, while the FB voltage is higher than 1.2V, the gate output recovers to normal working mode. This is called "burst mode". To reduce audio noise, the switching frequency will be kept higher than 20KHz in burst mode. ## **Oscillator Operation** The switching frequency is internally fixed at 65kHz. No external frequency setting components are required on PCB design. ### **Current Sensing and Leading-Edge Blanking** Cycle-by-Cycle current limitation is offered in U2263. The switching current is detected by a resistor into the SENSE pin. An internal leading-edge blanking circuit chops off the SENSE voltage spike at initial so that the external RC filtering on SENSE pin is no longer required. The current limiting comparator is disabled and thus cannot turn off the external MOSFET during the blanking period. PWM duty cycle is determined by the voltage in the SENSE pin and the FB pin. ### **Internal Synchronized Slope Compensation** Slope compensation circuit adds voltage ramp onto the SENSE voltage according to PWM pulse width. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage. Slope compensation can help U2263 obtain the same output current in universal ac input voltage. #### **GATE DRIVE** GATE pin of U2263 has 300mA drive current capability and the highest voltage is clamped at 16V. Therefore, the dissipation of conduction and switching in MOSFET is minimized. #### **Protection Controls** U2263 has comprehensive protection functions including Cycle-by- Cycle current limitation (OCP), Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on VDD (UVLO), Over Temperature Protection (OTP). #### **Current limitation compensation** To obtain the same output current capability, the OLP threshold voltage is compensated for the different input AC voltage. This function makes the current of OLP is in consistency whatever the AC input is (110V or 220V). # **Package Information** **SOT-23-6** | Symbol | Dimension in Millimeters | | Dimensions in Inches | | |--------|--------------------------|-------|----------------------|-------| | Symbol | Min | Max | Min | Max | | Α | 2.692 | 3.099 | 0.106 | 0.122 | | В | 1.397 | 1.803 | 0.055 | 0.071 | | С | - | 1.450 | | 0.058 | | D | 0.300 | 0.550 | 0.012 | 0.022 | | F | 0.838 | 1.041 | 0.033 | 0.041 | | Н | 0.080 | 0.254 | 0.003 | 0.010 | | I | 0.050 | 0.150 | 0.002 | 0.006 | | J | 2.600 | 3.000 | 0.102 | 0.118 | | М | 0.300 | 0.600 | 0.012 | 0.024 | | θ | 0° | 10° | 0° | 10° | SOP-8 | Sumb ala | Dimensions in Millimeters | | Dimensio | ns in Inch | |----------|---------------------------|-------|----------|------------| | Symbols | MIN | MAX | MIN | MAX | | А | 4.801 | 5.004 | 0.189 | 0.197 | | В | 3.810 | 3.988 | 0.150 | 0.157 | | С | 1.346 | 1.753 | 0.053 | 0.069 | | D | 0.330 | 0.508 | 0.013 | 0.020 | | F | 1.194 | 1.346 | 0.047 | 0.053 | | Н | 0.178 | 0.229 | 0.007 | 0.009 | | I | 0.102 | 0.254 | 0.004 | 0.010 | | J | 5.791 | 6.198 | 0.228 | 0.244 | | М | 0.406 | 1.270 | 0.016 | 0.050 | | θ | 0° | 8° | 0° | 8° | DIP-8 | Symbol Size | MIN (mm) | MAX (mm) | Size
Symbol | MIN (mm) | MAX (mm) | |-------------|----------|----------|----------------|----------|----------| | A | 9.00 | 9. 20 | C2 | 0. 50 | OTYP | | A1 | 1. 474 | 1. 574 | C3 | 3. 20 | 3. 40 | | A2 | 0.41 | 0. 51 | C4 | 1.47 | 1. 57 | | A3 | 2.44 | 2.64 | D | 8. 20 | 8.80 | | A4 | 0.51 | TYP | D1 | 0. 244 | 0.264 | | A5 | 0.99 | TYP | D2 | 7.62 | 7. 87 | | В | 6. 10 | 6. 30 | θ1 | 17° | TYP4 | | C | 3. 20 | 3.40 | θ2 | 10° | TYP4 | | C1 | 7. 10 | 7.30 | θ3 | 8° ' | TYP | | Version | UPdate date | Version By | Revised content | |---------|--------------------|------------|-----------------| | V0.9 | 2018-7-14 | Li Wen | | | V0.91 | 2019-7-13 | Li wen | OCP,OVP,LEB |