

Integrated 15W wireless charging transmitter SOC which support PD input

Features

- Compliant with the WPC V1.2.4 specificatiosn transmitter design
- Support 5~15W applications
 - ♦ Single 5W applications
 - Fast charge input for 5~15W applications
 5V input for 5W output application
 9V input for 5W, 7.5W, 10W output application
 12V input for 5W, 7.5W, 10W, 15W output application
 - ♦ 12V charge input for 15W applications
 - Support multi-coil scheme(two coils, three coils)
- Integrate NMOS full bridge driver and full bridge power MOS
- Integrate voltage/current demodulator
- Support FOD (Foreign Object Detection) function
 - ♦ High sensitivity
 - ♦ Support dynamic FOD
 - ♦ External resistor adjusts FOD parameters
- Low quiescent dissipation and high efficiency
 - 10mA quiescent current
 - ♦ Charging efficiency is up to 79%
- Compatible with NPO and CBB capacitors
- Support Dynamic Power Modulation (DPM) for insufficient USB power source
 - ♦ Support low voltage charger of 5V/500mA
- Input over voltage, over current, under voltage protection
- Support AFC, PD3.0 input request
- Support DPDM Fast Charge input request
- Support Qi protocol BPP, PPDE certification
- Support NTC over temperature protection
- Support up to 3 LEDs indication
- Pacage: 5 mm × 5 mm 0.5pitch QFN32

Description

IP6826 is a wireless power transmitter controller SoC that integrates all required functions for the latest WPC Qi V1.2.4 specifications compliant wireless power transmitter design. Support A11, A11a, MP-A2 coil, support 5W, Apple 7.5W, Samsung 10W, 15W charging. It used analog PING to detect a RX wireless device for charging. Once RX device is detected, the IP6826 establish a communication with the RX wireless device and controls the coil power transfer by adjusting operation frequency, depended on calculating the data packages, received from RX device, with PID algorithm. IP6826 terminate power transfer when RX device is fully charged.

IP6826 integrate full-bridge driver and full bridge power MOS, includes voltage and current two-way ASK demodulation module, and input overvoltage/current protection and FOD module. IP6826 is a highly integrated SoC for small-size and low bom cost solutions and reduced time-to-market.

Applications

- Charge Jacket, wireless charging base
- Car wireless charging device

System Functional Diagram

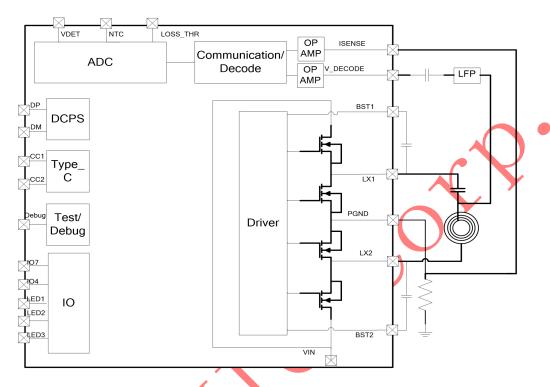


Figure 1 System functional diagram

1. Pin Description I07 20 21 19 NC 16 ★ LED2 IN 🗖 26 15 LED3 VIN ₩27 14 🛱 104 IP6826 DM 🗖 28 13 🔯 LED1 **№** 29 DΡ 12 ★ LOSS_THR QFN32 VDET ₩30 11 NTC NC DEBUG ⊠31 33 EPAD AGND ⋈ 32 9 🔯 CC2 CC1

Figure 2 IP6826 PIN diagram

IP6826

Pin No.	Pin Name	Description
1	GND	Analog Ground
2	IGND	Current communication/demodulation negative input
3	ISENSE	Current communication/demodulation positive input
4	VCC	Internal VCC supply, powered from VIN to 100R resistor or 4V LDO
5	PGND	The power ground of the internal power MOS transistor is connected to the external 20 $m\Omega$ sampling resistor positive terminal
6	HOSCI	External crystal oscillator input
7	HOSCO	External crystal oscillator output
8	CC1	Type_C detection pin CC1
9	CC2	Type_C detection pin CC2
10	DEBUG	Debug pin, serial output print information
11	NTC	NTC input PIN
12	LOSS_THR	Dynamic FOD parameter adjustment, external resistor to GND adjustment
13	LED1	LED1 output
14	104	Internal GPIO4
15	LED3	LED3 output
16	LED2	LED2 output
17	107	Internal GPIO7
18	V_DECODE	Voltage communication/demodulation input
19	BST1	Internal high voltage drive, connect to capacitor to LX1
20	LX1	H-bridge switching node 1
21	LX1	H-bridge switching node 1
22	LX2	H-bridge switching node 2
23	LX2	H-bridge switching node 2
24	BST2	Internal high voltage drive, connect to capacitor to LX2
25	NC	NC PIN is left floating and cannot be grounded
26	VIN	External voltage input PIN
27	VIN	External voltage input PIN
28	DM	USB DM
29	DP	USB DP
30	VDET	Coil voltage sense input
31	NC	NC PIN is left floating and cannot be grounded
32	AGND	Analog Ground

22	EPAD	The power ground of the internal power MOS transistor is connected to the
33	(PGND)	external 20 m Ω sampling resistor positive terminal

2. Absolute Maximum Ratings

Parameters	Symbol	Min	Max	Unit
	VIN	-0.3	16	
Input Voltage Range	VCC	-0.3	12	v
	DP,DM	-0.3	12	
Junction Temperature Range	Tı	-40	125	°C
Storage Temperature Range	Tstg	-60	125	°C
Package Thermal Resistance	θ_{JA}	4	0	°C/W
Human Body Model (HBM)	ESD	41	KV	v

^{*}Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability.

3. Recommended Operating Conditions

Parameters	Symbol	Min	Тур	Max	Unit
VIN input Voltage Range	VIN	4.5	5/9	12	V
VCC Voltage Range	VCC	3.8	4.2	5	V
	LED1,LED2,LED3	GND-0.3		VCC+0.3	
I/O Veltage Davis	NTC,LOSS_THR	GND-0.3		VCC+0.3	v
I/O Voltage Range	104,107	GND-0.3		VCC+0.3	V
	DP, DM	GND-0.3		5.5	

^{*}Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions.

4. Electrical Characteristics

Unless otherwise specified, TA =25 °C

Parameters	Symbol	Min	Тур	Max	Unit	Test Condition
VIN		4.5	5/9	12	V	
VCC		3.8	4.2	5	V	
VIH	Input high level	0.7xVCC			V	
VIL	Input low level			0.3xVCC	V	
VOH	Input high level		VCC		V	

^{*}Voltages are referenced to GND unless otherwise noted.

VOL	Input low level	GND		V	
Source current	LED1, LED2, LED3 output current capability	2	4	mA	Source current to output high level is 0.8xVCC
Rds	Drive bridge MOS tube impedance	25		m Ω	

5. Function Description

PD fast charge input request

The built-in PD protocol input request module can apply for fast charging voltage to the PD adapter through CC1 and CC2.

Full-bridge and Power MOS

IP6826 includes two symmetry half-bridge drive module with built-in power MOS, PWM frequency adjustable range is 110kHz~205kHz with 0.25kHz/step.

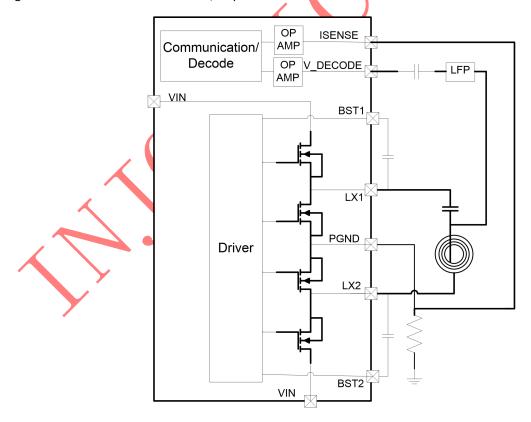


Figure 3 full-bridge drive application circuit

DPM

IP6826 support Dynamic Power Management function for USB power source with insufficient power supply ability, which can guarantee the charging status will not break off or suspend. When the system detect the input voltage is lower than 4.3V, DPM function will be enabled and the transmitting power will be reduced. When the input voltage returns to above 4.75V and the input current is reduced by 200mA compared to when entering DPM, the system exits the DPM state.

Digital Demodulation

Integrate two-way ASK demodulation module, sampling the voltage and current of the coil separately. Current demodulation, additional separate devices are needed for low pass filters and first amplifier, signals is send to IC for digital demodulation and decode after DC blocked.

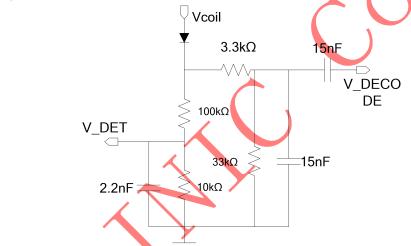
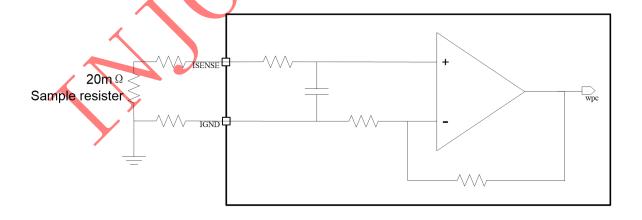
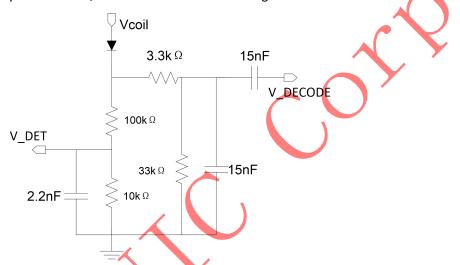


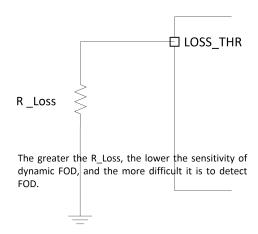
Figure 4 Voltage ASK demodulation external circuit




Figure 5 Current ASK demodulation external circuit

FOD parameter adjustment

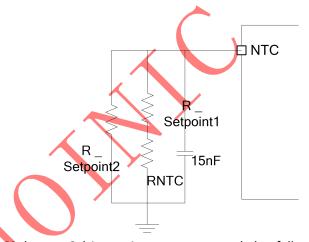
IP6826 supports static FOD foreign object detection and dynamic FOD foreign object detection; Static FOD means that foreign objects on the coil can be detected without wireless charging; Dynamic FOD means that foreign objects on the coil can be detected while charging wirelessly;


The IP6826 can adjust the sensitivity of the static FOD by adjusting the capacitance on the V_DET pin; the default is to connect the 2.2nF capacitor to ground, standard static FOD sensitivity: the greater the capacitance, the higher the sensitivity of static FOD, and the easier to detect foreign bodies.

The larger the capacitance, the higher the sensitivity of the static FOD, and the easier it is to detect foreign bodies.

IP6826 can adjust the sensitivity of dynamic FOD by external resistor to GND on the LOSS_THR pin; The LOSS_THR pin defaults to a 100K resistor to ground, using standard dynamic FOD sensitivity; The larger the external resistor R_Loss of LOSS_THR, the lower the sensitivity of dynamic FOD, the less easy to detect FOD; The sensitivity of the dynamic FOD is set only by detecting the resistance of the LOSS_THR pin at power-on; 50K<R_LOSS resistor <130K.

NTC Thermal Protection


The NTC pin of the IP6826 is fixed to output 20uA current, and the NTC PIN determines the NTC temperature by sampling the voltage of the NTC pin. The NTC thermal shutdown protection is for enhancement application, but not limited to thermal shutdown. When NTC voltage is lower than 0.5V, the system will terminate the power transmittion. After entering NTC protection, the NTC voltage is greater than 0.72V, and normal charging resumes. If NTC is not used, this pin is grounded through a 100K resistor.

NTC resistor selection, refer to the following stage:

- 1. Refer to NTC resistor data handbook, search the resistor-temperature relation sheet
- 2. Find the related resistor R_NTC according to the protection temperature
- 3. Determine series resistance R_SetPoint1 and parallel resistance R_SetPoint2 according to the following formula:

If the temperature protection point needs to be increased: parallel resistance R_SetPoint2 NC, change series esistance R_SetPoint1 = 25K-RNTC;

If the temperature protection point needs to be reduced: series resistance R_SetPoint1 = 0 ohm, parallel resistance R_SetPoint2 = 25K*RNTC/(RNTC-25K);

Protection temperature 60 degrees Celsius, resistance recommended as follows:

RNTC=100K@25 degrees Celsius B=3950, R _ Setpoint1=0 ohm, R _ Setpoint2 NC;

Protection temperature 70 degrees Celsius, resistance recommended as follows:

RNTC=100K@25 degrees Celsius B=3950, R _ Setpoint1=7.5K ohm, R _ Setpoint2 NC;

Protection temperature 50 degrees Celsius, resistance recommended as follows:

RNTC=100K@25 degrees Celsius B=3950, R Setpoint1=0 ohm, R Setpoint2 = 82K ohm;

LED Status Indicator

IP6826 can drive 2 LEDs directly through serial current-limit resistor. LEDs' status and system status relations are listed below:

Status	LED1	LED2	
Power-on	Flashing three times simultaneously		
Standby	Off	Off	

Charging	On	Off
Abnormal	Off	Flashing

Firmware can be modified by customization or configuration tools to support up to three LEDs, Support breathing, flashing, always bright, always dark, pwm to adjust the brightness.

Test Waveform

Using TI bq51020 solution for RX device, the relationship of efficiency and system output power and test method are outlined below. (VOUT=5V).

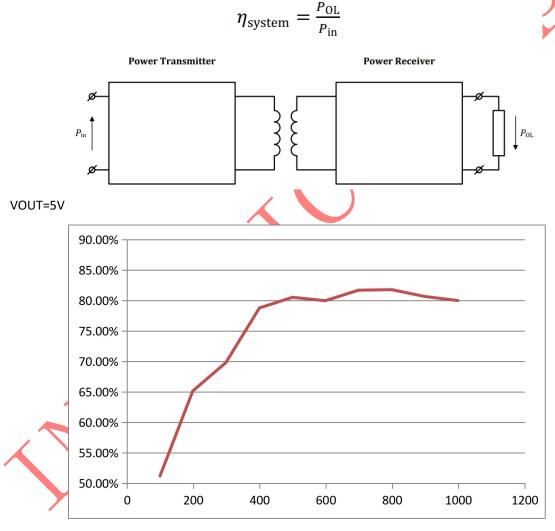


Figure 6 System efficiency (using IDT P_9221_R RX)

VOUT=9V

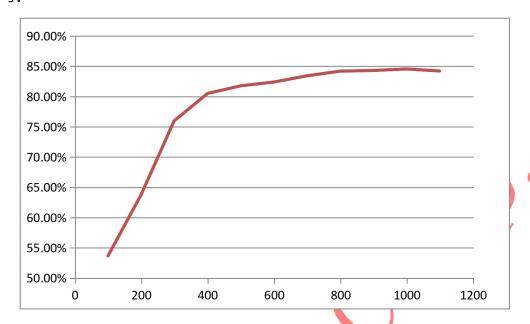
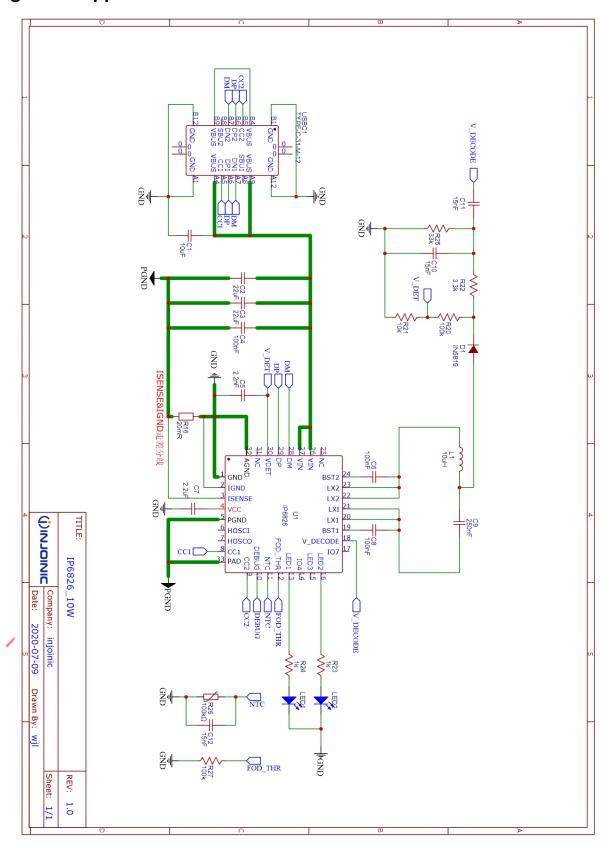


Figure 7 System efficiency (using IDT P_9221_R RX)

6. Operating Instructions

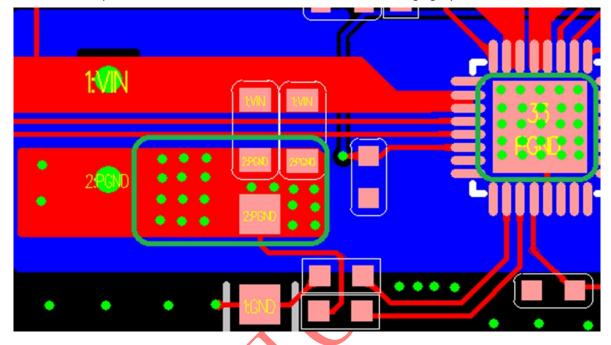
IP6826 realizes wireless charging schemes of different powers according to the matching of different transmitting coils and resonant capacitors.


According to customer needs, 10uH coil with 250nF resonant capacitor, and 13uH coil with 150nF resonant capacitor.

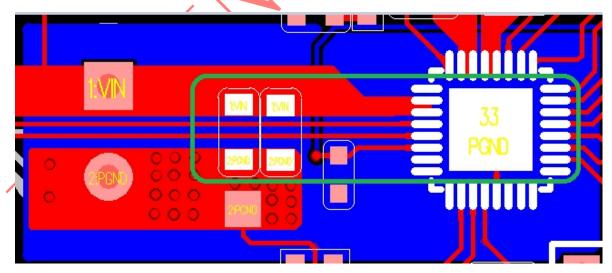
7. Typical Application Schematic

IP6826 wireless charging solution only needs capacitors, resistors and few passive devices. BST1, BST2 boost capacitors C6, C8 can't be omitted.

Single Coil Application

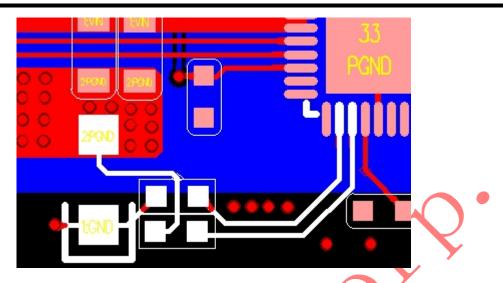

BOM List

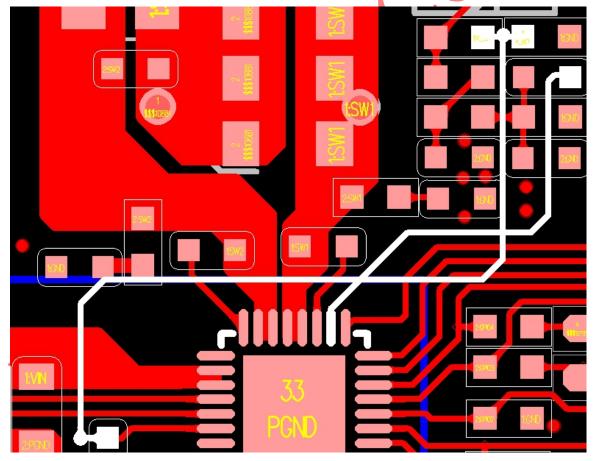
Item	Part Name	Description&specification	Description	Qty
1	LED	LED2,LED1	LED0805	2
2	IN5819	D1	SOD-523_L1.2-W0.8-LS1.6-RD	1
3	250nF	C9	CAP-TH_L13.0-W7.5-P10.00-D1.0	1
4	15nF	C12,C11,C10	C0603	3
5	2.2nF	C5	C0603	1
6	100nF	C6,C8,C4	C0603	3
7	2.2uF	C7	C0603	1
8	IP6826	U1	QFN-32_L5.0-W5.0-P0.50-BL-EP3.4	1
9	100k Ω	R26	R0603	1
10	10uH	L1	IND-SMD_L2.5-W2.0	1
11	33k	R25	R0603	1
12	3.3k	R22	R0603	1
13	100k	R20,R27	R0603	2
14	1k	R24,R23	R0603	2
15	10k	R21	R0603	1
16	10uF	C1	C0805	1
17	22uF	C2,C3	C0805	2
18	20mR	R16	R0603	1
19	TYPE-C-31-M-12	USBC1	USB-C_SMD-TYPE-C-31-M-12	1



8. Layout Notifications

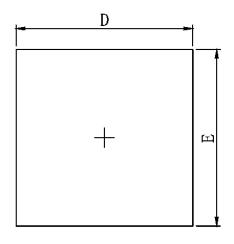
1. As shown in the following figure: current sampling resistance and IP6826's PGND are power lines, which need to be as short as possible, and more holes need to be added when changing layers;


2. As shown in the following figure: input the filter capacitance between VIN and PGND, the smaller the ring road area, the better;

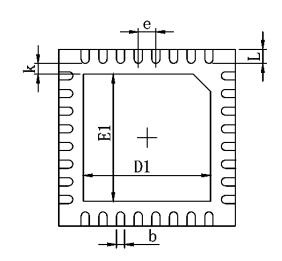

3. As shown in the following figure: Sampling routes from current sampling resistors to IP6826 ISENSE and IGND need separate leads from both ends of resistors, not to coincide with the power routes of the same networkand to be as short as possible, while away from resonant capacitors and coils.

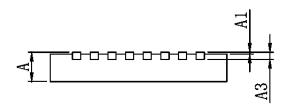
Email: service@injoinic.com

4. As shown in the following figure: The V_DECODE and V_DET routes of IP6826 are as far away as possible from resonant capacitors, coils and other power routes, and need to be surrounded by ground.



- 5. The loop area between the resonant capacitor and the coil and the IP6826 needs to be as small as possible, and away from the low-voltage signal lines such as LED, NTC, and IO.
- 6. The capacitance of the 4th pin VCC should ensure sufficient capacity of 2.2uF, and the capacitor position is close to the chip pin; and the ground loop of the VCC capacitor ground to the chip 1 pin cannot be blocked by other signals.


Email: service@injoinic.com


9. Package

BOTTOM VIEW

SIDE VIEW

6.	mbol	Dimensions I	n Millimeters	Dimensions In Inches					
3)	Symbol	Min.	Max.	Min.	Max.				
	Α	0.700	0.800	0.028	0.031				
	A1	0.000	0.050	0.000	0.002				
	A3	0.203	REF.	0.008REF.					
	D	4.924	5.076	0.194	0.200				
	E	4.924	5.076	0.194	0.200				
	D1	3.700	3.900	0.146	0.154				
	E1	3.700	3.900	0.146	0.154				
	k	0.200	OMIN.	0.008	BMIN.				
	b	0.200	0.300	0.008	0.012				
	е	0.500	TYP.	0.020	TYP.				
	L	0.250	0.350	0.010	0.014				

10. IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.

