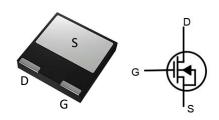


650V GaN Power Transistor (FET)

Features


- Easy to use, compatible with standard gate drivers
- Excellent Q_g x R_{DS(on)} figure of merit (FOM)
- Low Qrr, no free-wheeling diode required
- Low switching loss
- RoHS compliant and Halogen-free

Product Summary						
V _{DSS}	650	V				
R _{DS(on), typ}	240	mΩ				
Q _{G, typ}	21.5	nC				
Q _{RR, typ}	39	nC				

Applications

- High efficiency power supplies
- High efficiency USB PD adapters
- Other consumer electronics

Packaging

Part Number	Package	Packaging	Base QTY
XG65T300HS2A	DFN 8 x 8	Tape and Reel	2500

Maximum ratings, at Tc=25 °C, unless otherwise specified

Symbol	Parameter	Limit Value	Unit			
	Continuous drain current @T _c =2	9	А			
Ι _D	Continuous drain current @T _c =1	Continuous drain current @T _c =100°C				
	Pulsed drain current @T _c =25°0 10us)	31	А			
I _{DM}	Pulsed drain current @T _C =150° 10us)	23	А			
V _{DSS}	Drain to source voltage (T _J = -55	650	V			
V _{GSS}	Gate to source voltage	±20	V			
PD	Maximum power dissipation @1	Г _с =25°С	38	W		
T _C		Case	-55 to 150	°C		
TJ	 Operating temperature 	Junction	-55 to 150	°C		
Ts	Storage temperature		-55 to 150	°C		
T _{CSOLD}	Soldering peak temperature		260	°C		

Thermal Resistance

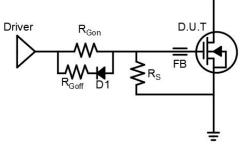
Symbol	Parameter	Typical	Unit
Rojc	Junction-to-case	3.3	°C/W
Roja	Junction-to-ambient ^a	50	°C/W

Notes:

a. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper area and 70µm thickness)

Electrical Parameters, at T_J=25 °C, unless otherwise specified

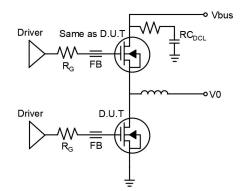
Symbol	Min	Тур	Max	Unit	Test Conditions
Forward Devic	e Characte	eristics	1	1	
V _{DSS-MAX}	650	-	-	V	V _{GS} =0V
V _{GS(th)}	1.2	1.6	2.0	V	$V_{DS}=V_{GS}$, $I_D=500\mu A$
5 2	190	240	290	mΩ	V _{GS} =8V, I _D =4A, T _J =25°C
R _{DS(on)} ^a	-	500	-	- 11152	V _{GS} =8V, I _D =4A, T _J =150°C
I _{DSS}	-	8	20	μΑ	V _{DS} =700V, V _{GS} =0V, T _J =25°C
IDSS	-	50	-	μΑ	V _{DS} =700V, V _{GS} =0V, T _J =150°C
I _{GSS}	-	-	150	nA	V _{GS} =20V
1655	-	-	-150	nA	V _{GS} =-20V
C _{ISS}	-	500	-	pF	
Coss	-	18	-	pF	V _{GS} =0V, V _{DS} =650V, f=1MHz
C _{RSS}	-	2	-	pF	1
C _{O(er)}	-	25	-	pF	
C _{O(tr)}	-	45	-	pF	- V _{GS} =0V, V _{DS} =0 - 650V
Q _G	-	21.5	-		
Q _{GS}	-	3	-	nC	V _{DS} =400V, V _{GS} =0 - 12V, I _D =5.5A
\mathbf{Q}_{GD}	-	3.5	-		
t _{D(on)}	-	20	-		
t _R	-	7	-	1	
$t_{D(off)}$	-	80	-	- ns	V_{DS} =400V, V_{GS} =0 - 12V, I_{D} =3A, R_{G} =30 Ω
t _F	-	6	-		
Reverse Device	e Characte	ristics			·
	-	1.2	-		V _{GS} =0V, I _S =2A, T _J =25°C
V_{SD}	-	1.7	-	V	V _{GS} =0V, I _S =5A, T _J =25°C
	-	2	-	1	V _{GS} =0V, I _S =5A, T _J =150°C
t _{RR}	-	12	-	ns	
Q _{RR}	-	39	-	nC	$I_{s}=3A, V_{Gs}=0V, d_{i}/d_{t}=1000A/us, V_{DD}=400V$


Notes:

a. Dynamic on-resistance; see Figure 18

Circuit Implementation

(1) Mostly used in flyback, forward and push-pull converters



Recommended Single Ended Drive Circuit

Recommended gate drive: (0 V, 12 V) with R_{Gon} = 300 - 500 $\Omega,$ R_{Goff} =10 Ω

Gate	Gate	Gate	Gate Source	Gate
Ferrite Bead	Resistance	Resistance	Resistance	Diode
(FB)	(R _{Gon})	(R _{Goff})	(R _s)	(D1)
300 - 600 Ω@100 MHz	300 - 500 Ω	10 Ω	10 kΩ	1N4148

(2) Mostly used in half bridge and full bridge topology

Recommended Half-bridge Drive Circuit

Recommended gate drive: (0 V, 12 V) with $R_G = 30 - 70 \Omega$

Gate Ferrite Bead	Gate Resistance	DC Link RC Snubber
(FB)	(R _G)	(RC _{DCL})
300 Ω@100 MHz	30 - 70 Ω	4 nF + 2 Ω

Notes:

a. RC_{DCL} should be placed as close as possible to the drain pin

b. The layout and wiring of the drive circuit should be as short as possible

Typical Characteristics, at $T_C=25$ °C, unless otherwise specified

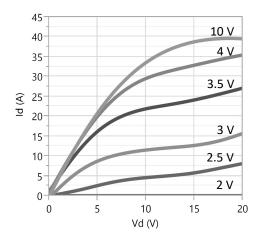


Figure 1. Typical Output Characteristics T_=25°C

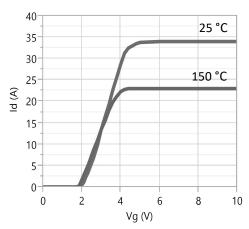
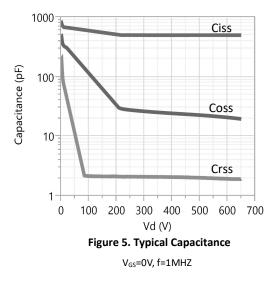



Figure 3. Typical Transfer Characteristics

V_{DS}=10V, Parameter: T₁

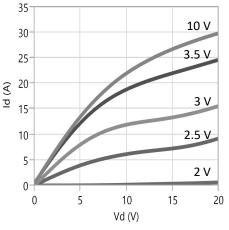
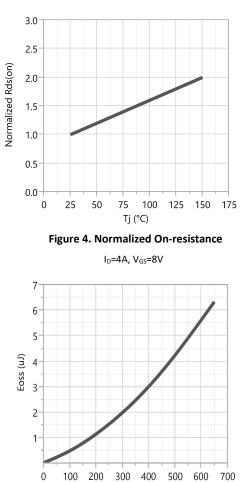
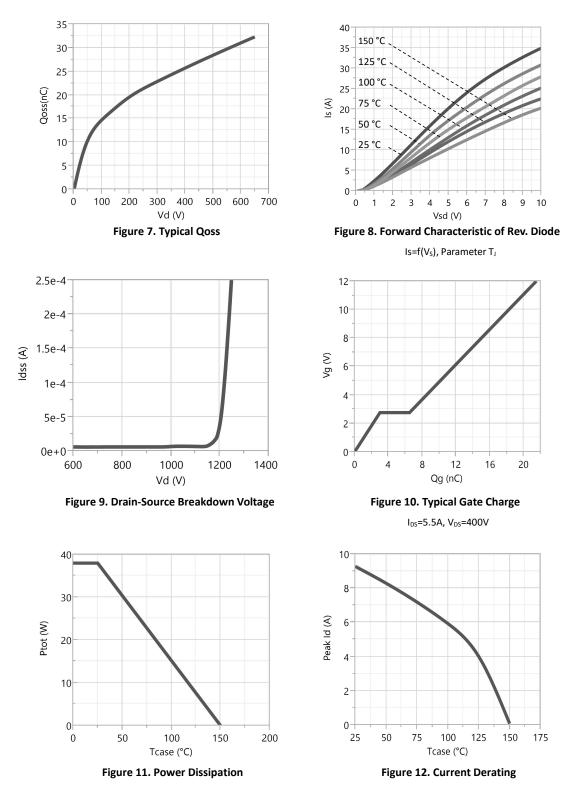



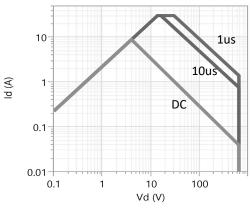
Figure 2. Typical Output Characteristics T_J =150°C

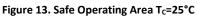
Parameter: V_{GS}



Vd (V)

Figure 6. Typical Coss Stored Energy




Typical Characteristics, at Tc=25 °C, unless otherwise specified

Typical Characteristics, at Tc=25 °C, unless otherwise specified

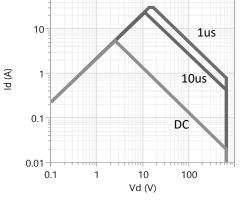


Figure 14. Safe Operating Area T_c=80°C

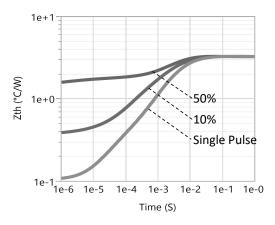


Figure 15. Transient Thermal Resistance

Test Circuits and Waveforms

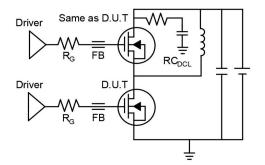


Figure 16. Switching Time Test Circuit

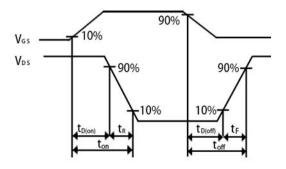


Figure 17. Switching Time Waveform

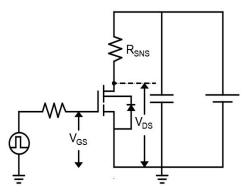


Figure 18. Dynamic R_{DS(on)} Test Circuit

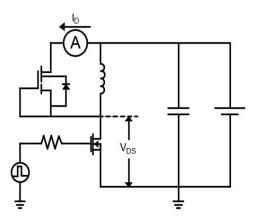


Figure 20. Diode Characteristic Test Circuits

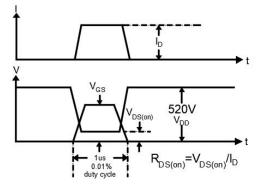


Figure 19. Dynamic R_{DS(on)} Waveform

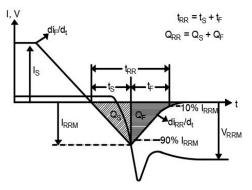
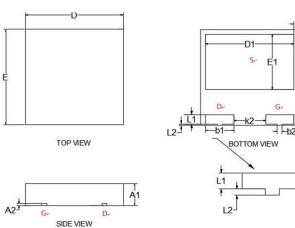


Figure 21. Diode Recovery Waveform

Design Guidelines

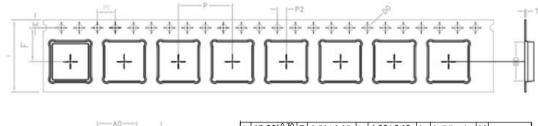
Fast switching GaN device can reduce power conversion losses, and thus enable high frequency operations. Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.

Before evaluating Xinguan's GaN devices, please refer to the table below which provides some practical rules that should be followed during the evaluation.


DO	DO NOT
Make sure the traces are as short as possible for both	Using Xinguan's devices in GDS board layouts
drive and power loops to minimize parasitic inductance	
Use the test tool with the shortest inductive loop, and	Use differential mode probe or probe ground clip with
make sure test points should be placed close enough	long wires
Minimize the lead length of DFN 8*8mm packages	Use long traces in drive circuit, or long lead length of
when installing them to PCB	the devices

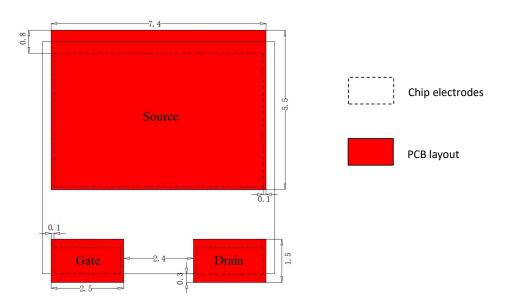
When Evaluating Xinguan's GaN Devices:

Package Outline


DFN 8 x 8mm (HS) Package

Symbol	Dimen	sions in Mill	imeters
Symbol	MIN	NOM	MAX
A1	1.750	1.850	1.950
A2	0.185	0.203	0.230
D	7.000	8.000	9.000
E	7.950	8.000	8.050
D1	7.050	7.200	7.350
E1	4.450	4.600	4.750
K1	0.375	0.400	0.425
K2	2.575 2.600		2.625
b1	2.250	2.300	2.350
b2	0.375	0.400	0.425
L1	0.700	0.800	0.900
L2	0.075	0.100	0.125

Tape and Reel Information


Dimensions are shown in millimeters

W	$16.00^{+0.30}_{-0.30}$	Т	0.30±0.05	Po	4.00±0.10	Ao	8.35±0.1	A1
		F	7.50±0.10	P2	2.00±0.10	Bo	8.35±0.1	B 1
Е	1.75±0.10	Ρ	12.00±0.10	DO	ø1.50+0.10	Ko	2.10±0.10	K1

Recommended PCB Layout

Dimensions are shown in millimeters

 $$10\,/\,11$$ This datasheet is subject to change without notice.

Revision History

Version	Date	Change(s)
0.1	8/1/2021	Preliminary Datasheet