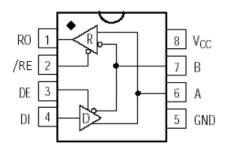


High ESD-Protected, Fail-Safe, Slew-Rate-Limited

RS-485 Transceivers


General Description

The BL3085A(H) is a half-duplex RS-485 transceiver with ±15kV IEC 61000-4-2 contact ESD protection. This device contains one driver and one receiver. The BL3085A(H) includes fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high even if all transmitters on a terminated bus are disabled. The BL3085A(H) features reduced slew-rate driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The BL3085A(H) has a 1/8 unit load receiver input impedance that allows up to 256 transceivers on the bus.

Features

- ➤ +3.3V or +5V Operation
- > True Fail-Safe Receiver
- Maximum Data Rate: 250kbps
- > Allow Up to 256 Transceivers on the Bus
- > I/O Pins ESD Protection:
 - ±15kV IEC 61000-4-2, contact Discharge
- Available in SOP8 Package

Functional Block

Applications

- RS-485 Communications
- Level Translators
- > Transceivers for EMI-Sensitive Applications
- Industrial Control Local Area Networks
- Energy Meter Networks
- Lighting Systems

Ordering Information

Part Number	Package	Marking
DI 2095 A (II)	SOP8	BL3085A
BL3085A(H)	3019	I47SSSSS

"SSSSS" : Product Trace Code

Pin Function Description

Pin Number	Name	Function			
1	RO	Receiver Output.			
2	/RE	Receiver Output Enable. /RE is low to enable the Receiver; /RE is high to disable the Receiver.			
3	DE	Driver Output Enable. DE is high to enable the Driver; DE is low to disable the Driver.			
4	DI	Driver Input			
5	GND	Ground.			
6	A	Non-inverting Receiver Input and Non-inverting Driver Output.			
7	В	Inverting Receiver Input and Inverting Driver Output.			
8	V _{cc}	Power Supply.			

Function Table (Transmitting)

Inputs			Outputs		
/RE	DE	DI	А	В	
Х	1	1	1	0	
Х	1	0	0	1	
0	0	Х	High-Z	High-Z	
1	0	Х	Shutdown (High-Z)		

Function Table (Receiving)

Inputs			Outputs
/RE	DE	A-B	RO
0	Х	>-50mV	1
0	Х	<-200mV	0
0	Х	Open/shorted	1
1	1	X	High-Z
1	0	Х	Shutdown (High-Z)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Power Supply	Vcc	+7	V
Control Input Voltage	/RE, DE	-0.3 to Vcc+0.3	V
Transmitter Input Voltage	DI	-0.3 to V _{CC} +0.3	V
Transmitter Output Voltage	A, B	±13	V
Receiver Input Voltage	A, B	±13	V
Receiver Output Voltage	RO	-0.3 to V _{CC} +0.3	V
Operating Temperature		-40 to +85	°C

DC Electrical Characteristics (5V Operation)

 $(VCC=+5V\pm5\%, TA=-40\,^\circ\!\!C \sim +85\,^\circ\!\!C$, Typical Values are VCC=+5V and TA=25 $^\circ\!\!C$) (Note1)

Parameter	Symbol	conditions	MIN	TYP	MAX	UNITS
Power Supply	Vcc		4.5		5.5	V
Driver					1	
Differential Driver Output(no load)	V _{OD1}	Figure 1			Vcc	V
Differential Driver Output	V _{OD2}	Figure 1, R=27Ω	1.5			V
Change in Magnitude of Differential Output Voltage(Note 2)	ΔV_{OD}	Figure 1, R=27 Ω			0.2	v
Driver Common-mode Output Voltage	Voc	Figure 1, R=27Ω	1.0		3.0	V
Change in Magnitude of Common-Mode Voltage (Note 2)	ΔVoc	Figure 1, R=27 Ω			0.2	V
Input High Voltage	VIH	DE,DI,/RE	2.0			V

Input Low Voltage	VIL	DE,DI,/RE	≡			0.8	V
DI Input Hysteresis	V _{HYS}				100		mV
Input Current(A and B)	l _{IN4}	DE=GND V _{cc} =GND	V _{IN} =12V			125	μA
		or 5.25V	V _{IN} =-7V	-75			•
Driver Short-Circuit Output Current	Iosd	A Pin Sho	ort to B Pin	-100		100	mA
Receiver					-		
Receiver Differential Threshold Voltage	V _{TH}	-7V≦V _{CM}	i≦12V	-200	-125	-50	mV
Receiver Input Hysteresis	∆Ѵтн				40		mV
Receiver Output High Voltage	V _{OH}	I ₀ =-8mA,V _{ID} =-50mV		4.0			V
Receiver Output Low Voltage	Vol	Io=8mA,Vid=-200mV				0.4	V
Three-State Output Current at Receiver	lozr					±1	μA
Receiver Input Resistance	R _{IN}	-7V≦V _{CM}	ı≦12V	96			KΩ
Receiver Output Short-Circuit Current	losr	0V≦V _{RO} ∶	≦V _{CC}	±7		±95	mA
Supply Current			k		ш.		
	Icc	No load , 「 /RE=DI	DE=Vcc		350	600	μA
Supply Current	ICC		DE=GND		370	600	μA
Supply Current in Shutdown Mode	Ishdn	DE=GND, /RE=VCC, DI=V _{CC} or GND				10	μΑ

DC Electrical Characteristics (3.3V Operation)

(VCC=+3.3V±5%,TA=-40°C∼+85	C. Typical Values are VCC:	$=+3.3V$ and IA $=25^{\circ}C$ (Note1)

Parameter	Symbol	cond	itions	MIN	TYP	MAX	UNITS
Power Supply	Vcc			3		3.6	V
Driver							
Differential Driver Output(no load)	V _{OD1}	Figure 1				Vcc	V
Differential Driver Output	V _{OD2}	Figure 1,	R=27Ω	0.8	1.15		V
Change in Magnitude of Differential Output Voltage(Note 2)	ΔV_{OD}	Figure 1,	R=27Ω			0.2	V
Driver Common-mode Output Voltage	Voc	Figure 1,	R=27Ω	1.0		3.0	V
Change in Magnitude of Common-Mode Voltage (Note 2)	ΔVoc	Figure 1,	R=27Ω			0.2	V
Input High Voltage	V _{IH}	DE,DI,/RE	1	2.0			V
Input Low Voltage	VIL	DE,DI,/RE	E			0.8	V
DI Input Hysteresis	V _{HYS}				100		mV
Input Current(A and B)	I _{IN4}	DE=GND Vcc=GND	V _{IN} =12V			125	μA
		or 3.6V	$V_{IN}=-7V$	-75			
Driver Short-Circuit Output Current	Iosd	A Pin Sho	ort to B Pin	-100		100	mA
Receiver							
Receiver Differential Threshold Voltage	V _{TH}	-7V≦V _{CM}	≦12V	-200	-125	-50	mV
Receiver Input Hysteresis	$ riangle V_{TH}$				40		mV
Receiver Output High Voltage	Vон	lo=-1.5mA mV	A,VID=-50	Vcc-0.5			V
Receiver Output Low Voltage	Vol	lo=2.5mA mV	,V _{ID} =-200			0.4	V
Three-State Output Current at Receiver	lozr					±1	μΑ
Receiver Input	RIN	-7V≦V _{CM}	≦12V	96			KΩ

Resistance							
Receiver Output Short-Circuit Current	I _{OSR}	$0V \leq V_{RO} \leq V_{CC}$		±7		±95	mA
Supply Current							
Supply Current	lcc	No load , /RE=DI	DE=Vcc		270	600	μΑ
		= GND or Vcc	DE=GND		290	600	μA
Supply Current in Shutdown Mode	Ishdn	DE=GND, /RE=VCC, DI=V _{CC} or GND				10	μA

Note 1: All currents into the device are positive. All currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

Note 2: \triangle VOD and \triangle VOC are the changes in VOD and VOC, respectively, when the DI input changes state.

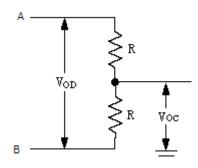
Switching Characteristics (5V Operation)

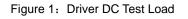
Parameter	Symbol	Conditions	MIN	ТҮР	ΜΑΧ	UNITS
Driver Input to	t dplh	Figure 3 and 5,		300	800	
Driver Input to Output	t dphl	R _{DIFF} =54Ω C _{L1} =C _{L2} =100pF		300	800	ns
Driver Output Skew Т _{DPLH} – Т _{DPHL}	t dskew	Figure 3 and 5, R _{DIFF} =54 Ω C _{L1} =C _{L2} =100pF			100	ns
Driver Rise or Fall Time	tdr, tdf	Figure 3 and 5, R _{DIFF} =54Ω C _{L1} =C _{L2} =100pF		420	900	ns
Maximum Data Rate	F мах		250			kbps
Driver Enable to Output High	t dzh	Figure 4 and 6, C∟=100pF S2 Closed			300	ns
Driver Enable to Output Low	t dzl	Figure 4 and 6, C _L =100pF S1 Closed			500	ns

(VCC=+5V \pm 5%,TA=-40°C \sim +85°C, Typical values are at VCC=+5V, TA=25°C)

Driver Disable Time from Low	t dlz	Figure 4 and 6, CL=15pF S1 Closed		900	ns
Driver Disable Time from High	t dhz	Figure 4 and 6, CL=15pF S2 Closed		800	ns
Receiver Input to Output	t RPLH t RPHL	Figure 7 and 9, $ V_{ID} \ge 2.0V$; ; rise and fall time of VID ≤ 15 ns	150	300	ns
T _{RPLH} – T _{RPHL} Differential Receiver Skew	t rskd	Figure 7 and 9, V _{ID} ≥ 2.0V ; rise and fall time of VID≦15ns	10		ns
Receiver Enable to Output Low	t _{RZL}	Figure 2 and 8, C _{RL} =15pF S1 Closed	20	50	ns
Receiver Enable to Output High	t rzh	Figure 2 and 8, C _{RL} =15pF S2 Closed	20	50	ns
Receiver Disable Time from Low	t _{RLZ}	Figure 2 and 8, C _{RL} =15pF S1 Closed	30	60	ns
Receiver Disable Time from High	t RHZ	Figure 2 and 8, C _{RL} =15pF S2 Closed	30	60	ns
Time to Shutdown	t shdn		500	1000	ns
Driver Enable from Shutdown to Output High	t dzh(shdn)	Figure 4 and6, C∟=100pF S2 Closed		2500	ns
Driver Enable from Shutdown to Output Low	t dzl(shdn)	Figure 4 and 6, C∟=100pF S1 Closed		2500	ns
Receiver Enable from Shutdown to Output High	t rzh(shdn)	Figure 2 and 8, C _{RL} =15pF S2 Closed		2500	ns
Receiver Enable from Shutdown to Output Low	t RZL(SHDN)	Figure 2 and 8, C _{RL} =15pF S1 Closed		2500	ns

Switching Characteristics (3.3V Operation)


Parameter	Symbol	Conditions	MIN	ТҮР	МАХ	UNITS
Driver Input to Output	t DPLH	Figure 3 and 5, R _{DIFF} =54Ω C _{L1} =C _{L2} =100pF		280 280	800 800	ns
Driver Output Skew Т _{DPLH} – Т _{DPHL}	t _{DSKEW}	Figure 3 and 5, $R_{DIFF}=54\Omega$ $C_{L1}=C_{L2}=100pF$			100	ns
Driver Rise or Fall Time	t _{DR} , t _{DF}	Figure 3 and 5, $R_{DIFF}=54\Omega$ $C_{L1}=C_{L2}=100pF$		450	900	ns
Maximum Data Rate	F MAX		250			kbps
Driver Enable to Output High	t dzh	Figure 4 and 6, C∟=100pF S2 Closed			300	ns
Driver Enable to Output Low	t dzl	Figure 4 and 6, C∟=100pF S1 Closed			500	ns
Driver Disable Time from Low	t dlz	Figure 4 and 6, C∟=15pF S1 Closed			900	ns
Driver Disable Time from High	t _{DHZ}	Figure 4 and 6, C∟=15pF S2 Closed			800	ns
Receiver Input to Output	t rplh t rphl	Figure 7 and 9, $ V_{ID} \ge 2.0V_{c}$; rise and fall time of VID \le 15ns		150	300	ns
T _{RPLH} – T _{RPHL} Differential Receiver Skew	t rskd	Figure 7 and 9, V _{ID} ≥ 2.0V ; rise and fall time of VID≦15ns		10		ns
Receiver Enable to Output Low	t _{RZL}	Figure 2 and 8, C _{RL} =15pF S1 Closed		20	50	ns
Receiver Enable to Output High	t _{RZH}	Figure 2 and 8, C _{RL} =15pF S2 Closed		20	50	ns


(VCC=+3.3V \pm 5%,TA=-40°C \sim +85°C, Typical values are at VCC=+3.3V, TA=25°C)

Receiver Disable Time from Low	t _{RLZ}	Figure 2 and 8, C _{RL} =15pF S1 Closed	30	60	ns
Receiver Disable Time from High	t RHZ	Figure 2 and 8, C _{RL} =15pF S2 Closed	30	60	ns
Time to Shutdown	t _{SHDN}		500	1000	ns
Driver Enable from Shutdown to Output High	t dzh(shdn)	Figure 4 and6, C∟=100pF S2 Closed		2500	ns
Driver Enable from Shutdown to Output Low	t dzl(shdn)	Figure 4 and 6, C∟=100pF S1 Closed		2500	ns
Receiver Enable from Shutdown to Output High	t rzh(shdn)	Figure 2 and 8, C _{RL} =15pF S2 Closed		2500	ns
Receiver Enable from Shutdown to Output Low	t rzl(shdn)	Figure 2 and 8, C _{RL} =15pF S1 Closed		2500	ns

Test Circuits and Timing Diagrams

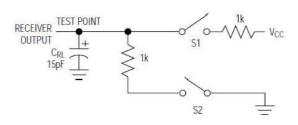


Figure 2: Receiver Enable/Disable Timing Test Load

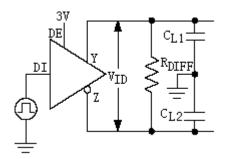


Figure 3: Driver Timing Test Circuit

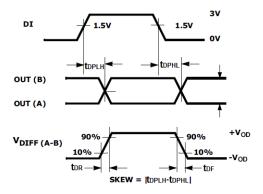


Figure 5: Driver Propagation Delays

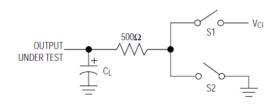


Figure 4: Driver Enable/Disable Timing Test Load

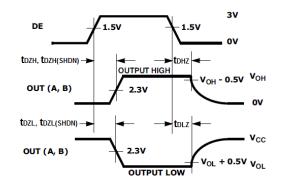


Figure 6: Driver Enable and Disable Times

1.5V

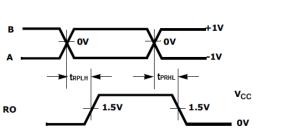


Figure 7: Receiver Propagation Delays

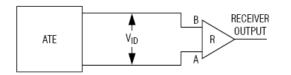
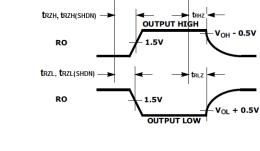



Figure 9: Receiver Propagation Delay Test Circuit

RE

Figure 8: Receiver Enable and Disable Times

зv

ov

VOH

ov

v_{cc}

VOL

1.51

Typical Application

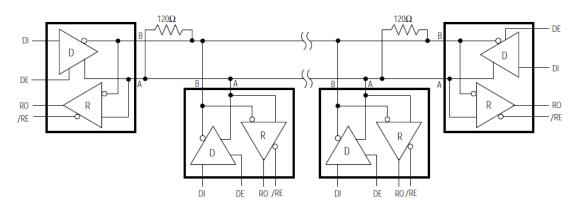
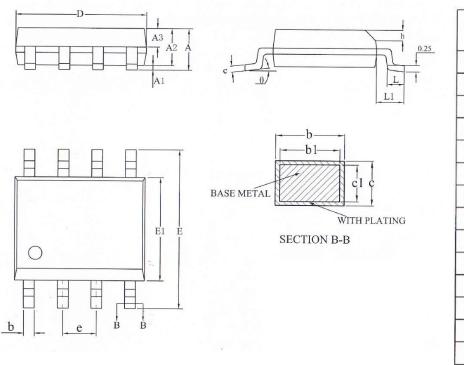



Figure10 Typical Half-Duplex RS-485 Network

Package Information (SOP8)

SYMBOL	MILLIMETER			
STMBOL	MIN	MIN NOM		
А	_	_	1.77	
A1	0.08	0.18	0.28	
A2	1.20	1.40	1.60	
A3	0.55	0.65	0.75	
b	0.39	_	0.48	
b1	0.38	0.41	0.44	
с	0.20	_	0.26	
c1	0.19	0.20	0.21	
D	4.70	4.90	5.10	
Е	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
e	1.27BSC			
h	0,25	_	0.50	
L	0.50	_	0.80	
L1	1.05REF			
θ	0	_	8°	