

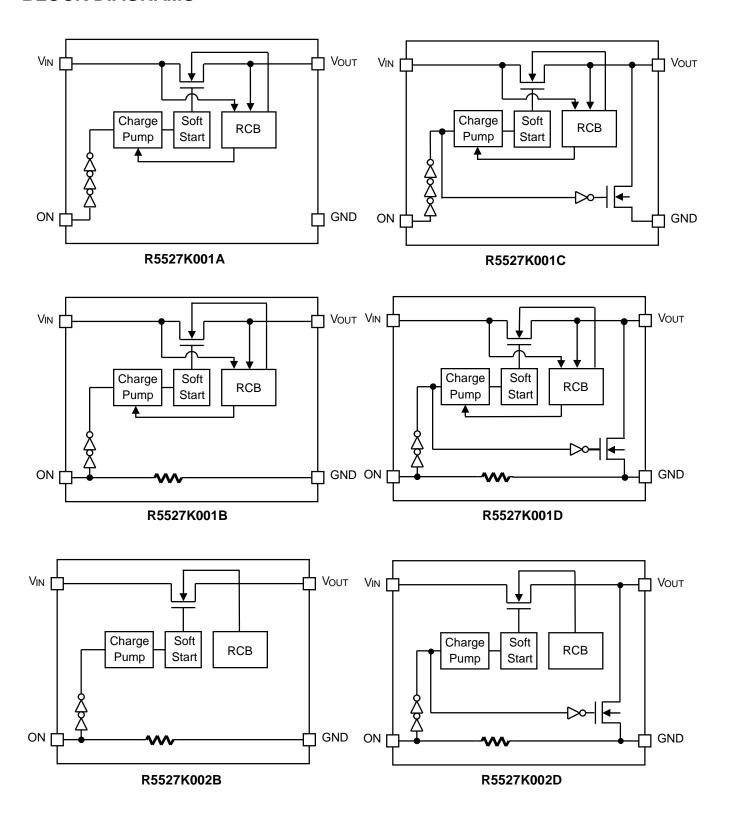
R5527K SERIES

3A Load Switch IC

NO. EA-312-201030

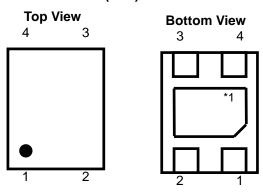
OUTLINE

The R5527K is an N-channel load switch IC with low supply current, Typ. 40µA. R5527K realizes low on-resistance by using Nch transistor for the driver. In addition, R5527K001x has a reverse current blocking function at on/off state, and R5527K002x has a reverse current blocking function at off state. The R5527K is an ideal load switch IC to supply power from the battery to the load circuit. The R5527K is available in an ultra-small DFN (PLP)1612-4D package which can achieve high-density mounting on boards.


FEATURES

Input Voltage Range	1.8V to 5.5V
Typical On Resistance	48mΩ (V _{IN} =5V)
	46mΩ (V _{IN} =4.5V)
	45mΩ (V _{IN} =3.8V)
	$68m\Omega$ (V _{IN} =1.8V)
Slew Rate/Inrush Control with tR	Min. 1.5ms
3A Maximum Continuous Current Capability	
Low Off Switch Current	Max.1µA (R5527K00xB/D)
	Max.2µA (R5527K001A/C)
Reverse Current Blocking (RCB)	At Off/On-State (R5527K001x)
	At Off-State (R5527K002x)
Package	DFN(PLP)1612-4D

APPLICATION


- · Smart Phones, Tablet PCs
- Storage, Portable Devices

BLOCK DIAGRAMS

PIN DESCRIPTION

Pin No	Symbol	Pin Description
1	V_{IN}	Supply Input Pin
2	GND	Ground Pin
3	ON	ON/OFF Control Pin, Active High/Low
4	Vouт	Switch Output Pin

^{*1} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level).

It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

SELECTION GUIDE

The ON pin polarity, the auto-discharge function⁽¹⁾ and the reverse current blocking (RCB) at on state for the ICs are user-selectable options.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5527K00**-TR	DFN(PLP)1612-4D	5,000 pcs	Yes	Yes

^{**:} Specify a combination of the ON pin polarity, the auto-discharge function and the RCB at on state.

**	ON pin Polarity	Auto-discharge	RCB at On-State
1A	"L" Active	No	Yes
1B	"H" Active	No	Yes
1C	"L" Active	Yes	Yes
1D	"H" Active	Yes	Yes
2B	"H" Active	No	No
2D	"H" Active	Yes	No

⁽¹⁾ Auto-Discharge function quickly lowers the output voltage to 0V by releasing the electrical charge in the external capacitor when the ON signal is switched from the active mode to the standby mode.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	ltem		
Vin	Input Voltage		-0.3 to 6.0	V
Von	Input Voltage (ON Pin)		-0.3 to 6.0	V
Vouт	Output Voltage	Output Voltage		
Іоит	Output Current		3.0	Α
P _D	Power Dissipation (DFN(PLP)1612-4D)*1 JEDEC STD. 51 Test Land Pattern		1810	mW
Та	Ambient Tmeprature		-40 to 85	°C
Tstg	Storage Temerature	Storage Temerature		

^{*1} Refer to *PACKAGE INFORMATION* for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = 1.8 \text{ to } 5.5 \text{V}, \ I_{\text{OUT}} = 1 \text{mA}, \ C_{\text{IN}} = 1 \mu \text{F}, \ C_{\text{OUT}} = \text{None}, \ \text{unless otherwise noted}.$ The specifications surrounded by _____ are guaranteed by design engineering at -40°C \le Ta \le 85°C.

R5527K001A (Ta=25°C)

Symbol	Item	Condition	ıs	Min.	Тур.	Max.	Unit
Vin	Input Voltage			1.8		5.5	V
I _{Q(OFF)}	Off Supply Current	Von=Vin,Vout=OPEN	1		1	2	μΑ
l	Shutdown Current	Von=Vin,	Ta=25°C		1	2	μΑ
Isd	Shutdown Current	V _{OUT} =GND	Ta=85°C		1	10	μΑ
ΙQ	Quiescent Current	V _{ON} =GND, I _{OUT} =0mA	4		40	70	μΑ
		V _{IN} =5V, I _{OUT} =1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
	On Registeres	VIN=3.8V, IOUT=1A			45	60	O
Ron	On Resistance	V _{IN} =3.3V, I _{OUT} =500m	ıΑ		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500m	ıΑ		51		
		V _{IN} =1.8V, I _{OUT} =250m	ıΑ		68		
ViH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	Von=Vin				1	μΑ
V _{T_RCB}	RCB Protection Trip Point	Vout - Vin			45		mV
V _{R_RCB}	RCB Protection Release Trip Point	Vin - Vout			25		mV
	RCB Hysteresis				70		mV
I _{SD_OUT}	V _{OUT} Shutdown Current	Von=GND, Vout=5.5 Vin=Short to GND	V,			10	μА
t _{DON} *1	Turn-On Delay	$V_{\text{IN}}=3.8\text{V}, \text{ R}_{\text{L}}=150\Omega,$ Time from ON="H"- $V_{\text{OUT}}=V_{\text{IN}} \times 10\%$	•	0.5		2.5	ms
t _R *1	V _{OUT} Rise Time	V _{IN} =3.8V, R _L =150Ω, Time from V _{OUT} =V _{IN} V _{IN} x 90%		1.5		5.0	ms
ton*1	Turn-On Time	$V_{\text{IN}}=3.8\text{V}, \text{ R}_{\text{L}}=150\Omega,$ Time from ON="H"- $V_{\text{OUT}}=V_{\text{IN}} \times 90\%$	•	2.0		7.5	ms

 $^{^{*1}}$ Rise time from V_{OUT} =0V is defined. Refer to the *TIMING CHART* for detailed information.

$V_{IN} = 1.8 \text{ to } 5.5 \text{V}, I_{OUT} = 1 \text{mA}, C_{IN} = 1 \mu \text{F}$	$C_{OUT} = None$, unless otherwise noted.
The specifications surrounded by	are guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

R5527K001B (Ta=25°C)

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage			1.8		5.5	V
I _{Q(OFF)}	Off Supply Current	V _{ON} =GND,V _{OUT} =OPEN			0.5	1	μΑ
	Chuideum Cumant	V _{ON} =GND,	Ta=25°C		0.5	1	μΑ
Isp	Shutdown Current	V _{OUT} =GND	Ta=85°C		0.5	10	μΑ
ΙQ	Quiescent Current	V _{ON} =V _{IN} , I _{OUT} =0mA			40	70	μΑ
		VIN=5V, IOUT=1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
Б	On Desistance	V _{IN} =3.8V, I _{OUT} =1A			45	60	0
Ron	On Resistance	V _{IN} =3.3V, I _{OUT} =500m	A		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500m	A		51		
		V _{IN} =1.8V, I _{OUT} =250m	V _{IN} =1.8V, I _{OUT} =250mA		68		
V _{IH}	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	Von=GND				1	μΑ
R _{ON_PD}	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5V			3		МΩ
V _{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}			45		mV
V _{R_RCB}	RCB Protection Release Trip Point	V _{IN} - V _{OUT}			25		mV
	RCB Hysteresis				70		mV
I _{SD_} OUT	V _{OUT} Shutdown Current	V _{ON} =GND, V _{OUT} =5.5° V _{IN} =Short to GND	V,			10	μА
t _{DON} *1	Turn-On Delay	$V_{IN}=3.8V$, $R_L=150\Omega$, O Time from $ON="L" \rightarrow "V_{OUT}=V_{IN} \times 10\%$	•	0.5		2.5	ms
t _R *1	V _{OUT} Rise Time	V _{IN} =3.8V, R _L =150Ω, V _{IN} Time from V _{OUT} =V _{IN} V _{IN} x 90%		1.5		5.0	ms
ton*1	Turn-On Time	$V_{IN}=3.8V$, $R_L=150\Omega$, Time from $ON="L" \rightarrow V_{OUT}=V_{IN} \times 90\%$	•	2.0		7.5	ms

 $^{^{\}star 1}$ Rise time from V_{OUT} =0V is defined. Refer to the *TIMING CHART* for detailed information.

$V_{\text{IN}} = 1.8$ to 5.5V, $I_{\text{OUT}} = 1 mA, C_{\text{IN}} = 1 \mu F$	C, C _{OUT} = None, unless otherwise noted.
The specifications surrounded by	are guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

R5527K001C (Ta=25°C)

Symbol	Item	Condition	s	Min.	Тур.	Max.	Unit
Vin	Input Voltage			1.8		5.5	V
		V _{ON} =V _{IN} ,	Ta=25°C		1	2	μΑ
I _{SD}	I _{SD} Shutdown Current	V _{OUT} =GND	Ta=85°C		1	10	μΑ
ΙQ	Quiescent Current	Von=GND, Iout=0mA	\		40	70	μА
		V _{IN} =5V, I _{OUT} =1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
Б	On Desistance	V _{IN} =3.8V, I _{OUT} =1A			45	60	0
Ron	On Resistance	V _{IN} =3.3V, I _{OUT} =500m	A		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500m	A		51		
		V _{IN} =1.8V, I _{OUT} =250m	A		68		
ViH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	V _{ON} =V _{IN}				1	μΑ
V _{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}			45		mV
V _{R_RCB}	RCB Protection Release Trip Point	V _{IN} - V _{OUT}			25		mV
	RCB Hysteresis				70		mV
I _{SD_OUT}	V _{OUT} Shutdown Current	Von=GND, Vout=5.5° V _{IN} =Short to GND	V,			10	μΑ
t _{DON} *1	Turn-On Delay	$V_{IN}=3.8V$, $R_L=150\Omega$, O 0 Time from $ON="H" \rightarrow V_{OUT}=V_{IN} \times 10\%$		0.5		2.5	ms
t _R *1	Vout Rise Time	V _{IN} =3.8V, R _L =150Ω, 0 Time from V _{OUT} =V _{IN} X V _{IN} x 90%	•	1.5		5.0	ms
t _{ON} *1	Turn-On Time	$V_{IN}=3.8V$, $R_{L}=150\Omega$, $C_{L}=150\Omega$,		2.0		7.5	ms
R _{LOW}	Nch. On Resistance for Auto-Discharge	VIN=VON=5.0V, VOUT=	:0.1V		20		Ω

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis.

*1 Refer to the *TIMING CHART* for detailed information.

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1 μ F, C_{OUT} = None, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

R5527K001D (Ta=25°C)

Symbol	Item	Condition	s	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
I	Shutdown Current	V _{ON} =GND,	Ta=25°C		0.5	1	μΑ
I _{SD}	Shutdown Current	V _{OUT} =GND	Ta=85°C		0.5	10	μΑ
ΙQ	Quiescent Current	V _{ON} =V _{IN} , I _{OUT} =0mA			40	70	μΑ
		V _{IN} =5V, I _{OUT} =1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
Ron On Resistance	V _{IN} =3.8V, I _{OUT} =1A			45	60	m0	
KON	On Resistance	V _{IN} =3.3V, I _{OUT} =500m	A		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500m	A		51		
		V _{IN} =1.8V, I _{OUT} =250m	A		68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	V _{ON} =GND				1	μА
R _{ON_PD}	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5\	/		3		МΩ
V _{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}			45		mV
V _{R_RCB}	RCB Protection Release Trip Point	V _{IN} - V _{OUT}			25		mV
	RCB Hysteresis				70		mV
I _{SD_OUT}	V _{OUT} Shutdown Current	Von=GND, Vout=5.5\ Vin=Short to GND	J,			10	μА
t _{DON} *1	Turn-On Delay	$V_{IN}=3.8V$, $R_L=150\Omega$, O 0 Time from $ON="L" \rightarrow "V_{OUT}=V_{IN} \times 10\%$		0.5		2.5	ms
t _R *1	V _{OUT} Rise Time	$V_{\text{IN}}=3.8\text{V}, R_{\text{L}}=150\Omega, G$ Time from $V_{\text{OUT}}=V_{\text{IN}} x$ $V_{\text{IN}} x 90\%$		1.5		5.0	ms
ton*1	Turn-On Time	$V_{\text{IN}}=3.8\text{V}, \text{ R}_{\text{L}}=150\Omega, \text{ C}$ Time from $ON="L" \rightarrow "$ $V_{\text{OUT}}=V_{\text{IN}} \times 90\%$		2.0		7.5	ms
RLOW	Nch. On Resistance for Auto-Discharge	V _{IN} =5.0V, V _{ON} =GND,	V _{OUT} =0.1V		20		Ω

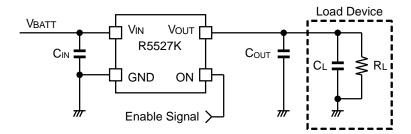
^{*1} Refer to the *TIMING CHART* for detailed information.

$VIN = 1.8 \text{ to } 5.5 \text{ V}, IOUT = 1\text{ mA}, CIN = 1 \mu\text{F}, Co$	UT = NONE, unless otherwise noted.
The specifications surrounded by are	e guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

R5527K002B (Ta=25°C)

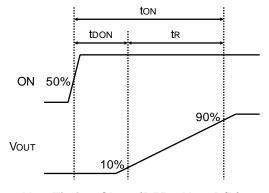
Symbol	Item	Condition	S	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
IQ(OFF)	Off Supply Current	Von=GND,Vout=OPE	:N		0.5	1	μΑ
	St. 1 to 2 const	V _{ON} =GND,	Ta=25°C		0.5	1	μΑ
I _{SD}	Shutdown Current	V _{OUT} =GND	Ta=85°C		0.5	10	μΑ
IQ	Quiescent Current	Von=Vin, Iout=0mA			40	70	μΑ
	On Resistance	V _{IN} =5V, I _{OUT} =1A			48	65	mΩ
Ron		V _{IN} =4.5V, I _{OUT} =1A			46		
		V _{IN} =3.8V, I _{OUT} =1A			45	60	
		V _{IN} =3.3V, I _{OUT} =500mA			45		
		V _{IN} =2.5V, I _{OUT} =500mA			51		
		V _{IN} =1.8V, I _{OUT} =250mA 68	68				
ViH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	V _{ON} =GND				1	μΑ
Ron_pd	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5V			3		МΩ
I _{REV(OFF)}	Reverse Current at Off-State	V _{ON} =GND, V _{OUT} =5.5V V _{IN} =1.8 V	V,			10	μА
t _{DON} *1	Turn-On Delay	$V_{IN}=3.8V$, $R_L=150\Omega$, $C_L=100\mu F$ Time from $ON="L"\rightarrow"H"$ to $V_{OUT}=V_{IN}$ x 10%		0.5		2.5	ms
t _R *1	Vout Rise Time	V _{IN} =3.8V, R _L =150Ω, C Time from V _{OUT} =V _{IN} X V _{IN} x 90%	•	1.5		5.0	ms
ton*1	Turn-On Time	$V_{IN}=3.8V, R_{L}=150\Omega, Time from ON="L" \rightarrow V_{OUT}=V_{IN} x 90\%$	•	2.0		7.5	ms

^{*1} Rise time from V_{OUT}=0V is defined. Refer to the *TIMING CHART* for detailed information.

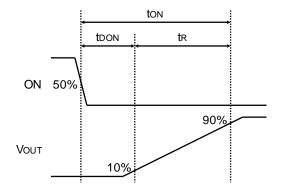

 $V_{\text{IN}} = 1.8 \text{ to } 5.5 \text{V}, \ I_{\text{OUT}} = 1 \text{mA}, \ C_{\text{IN}} = 1 \mu \text{F}, \ C_{\text{OUT}} = \text{None}, \ \text{unless otherwise noted}.$ The specifications surrounded by are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

R5527K002D (Ta=25°C)

Symbol	Item	Condition	s	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
1	Shutdown Current	VOIN-OND,	Ta=25°C		0.5	1	μΑ
I _{SD}			Ta=85°C		0.5	10	μΑ
ΙQ	Quiescent Current	Von=Vin, Iout=0mA			40	70	μΑ
	On Resistance	V _{IN} =5V, I _{OUT} =1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
		V _{IN} =3.8V, I _{OUT} =1A			45	60	
Ron		V _{IN} =3.3V, I _{OUT} =500m	A		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500mA			51	MΩ V 1.2 V 1 μA	-
		V _{IN} =1.8V, I _{OUT} =250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
V _{IL}	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
I _{ON}	ON Input Leakage	V _{ON} =GND				1	μΑ
R _{ON_PD}	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5V	/		3		МΩ
t _{DON} *1	Turn-On Delay	V_{IN} =3.8V, R_L =150 Ω , Q_L Time from ON="L" \rightarrow " Q_L = $Q_$		0.5		2.5	ms
t _R *1	Vout Rise Time	V _{IN} =3.8V, R _L =150Ω, 0 Time from V _{OUT} =V _{IN} > V _{IN} x 90%	•	1.5		5.0	ms
ton*1	Turn-On Time	V _{IN} =3.8V, R _L =150Ω, 0 Time from ON="L"→" V _{OUT} =V _{IN} x 90%		2.0		7.5	ms
R _{LOW}	Nch. On Resistance for Auto-Discharge	V _{IN} =5.0V, V _{ON} =GND,	Vout=0.1V		20		Ω

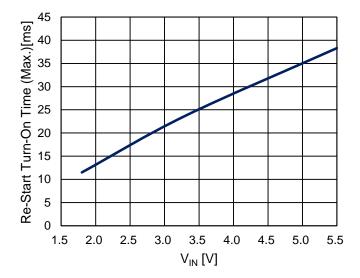

¹ Refer to the *TIMING CHART* for detailed information.

TYPICAL APPLICATION



R5527K Typical Application

TIMING CHART


V_{OUT} Timing Chart (R5527K00xB/D)

V_{OUT} Timing Chart (R5527K001A/C)

TECHNICAL NOTES

- Basically, the R5527K does not require a bypass capacitor between V_{IN} pin and GND, however, considering
 the spike noise, use 0.1μF or more capacitor (1μF [Ceramic] recommended) as a bypass capacitor. If spikes
 may occur due to the inductance component of the VIN wiring on the board, connect a capacitor with a
 sufficient capacitance value between VIN pin and GND.
- There will be a delay time (Max. 1ms) before R5527K becomes disabled.
- When a voltage is remained in the output pin at the restart, the startup time (the time until R5527K is able to fully drive the output load from ON signal input) takes longer than the ton definition. Refer to the following graph for the maximum value of the startup time. When returning from the reverse current blocking (RCB) trip point, the following startup time is necessary based on the RCB protection release trip point.

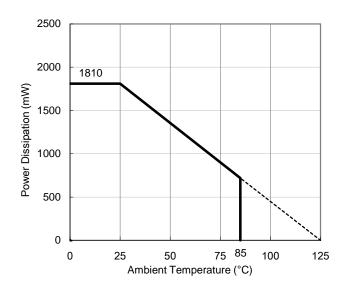
PACKAGE INFORMATION

Power Dissipation (DFN(PLP)1612-D

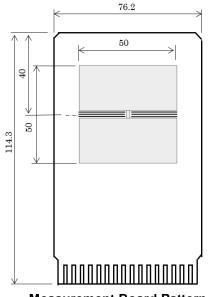
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

Item	Measurement Conditions		
Environment	Mounting on Board (Wind Velocity = 0 m/s)		
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)		
Board Dimensions	76.2 mm × 114.3 mm × 1.6 mm		
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square		
Through-holes	φ 0.25 mm × 25 pcs		

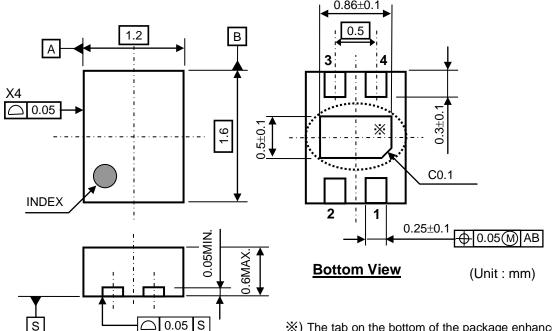

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$


Item	Measurement Result
Power Dissipation	1810 mW
Thermal Resistance (θja)	θja = 55°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 27°C/W

 θ ja: Junction-to-Ambient Thermal Resistance

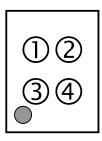
ψjt: Junction-to-Top Thermal Characterization Parameter



Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

Package Dimensions (DFN(PLP)1612-4D)



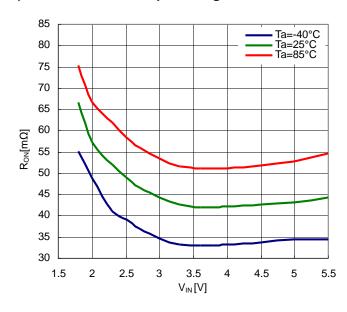
X) The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

Mark Specification (DFN(PLP)1612-4D)

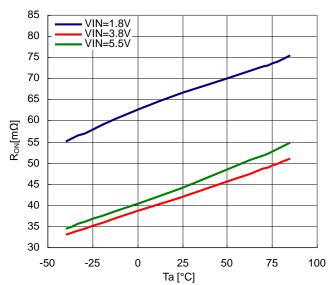
①②: Product Code ... Refer to "R5527K Mark Specification Table".

③ ④: Lot Number ... Alphanumeric Serial Number

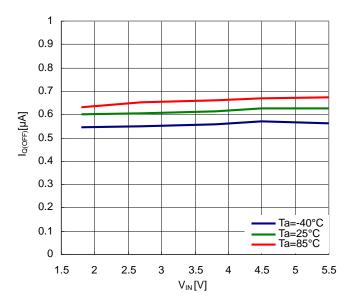
Mark Specification

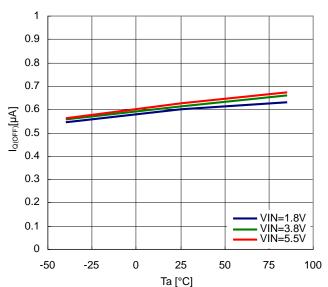

R5527K Mark Specification Table (DFN(PLP)1612-4D)

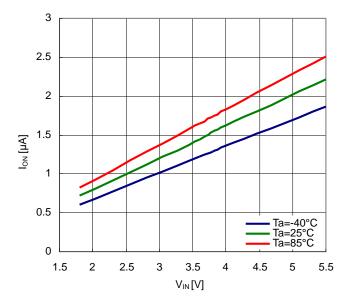
Product Name	02
R5527K001B	7A
R5527K001C	7B
R5527K001D	7C
R5527K001A	7D
R5527K002B	7E
R5527K002D	7F

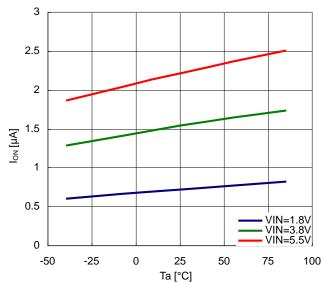

TYPICAL CHARACTERISTICS

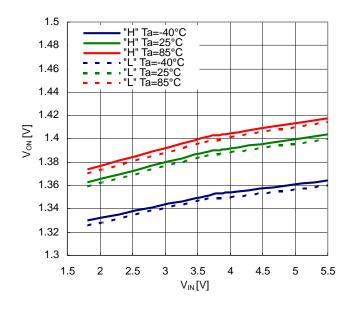
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

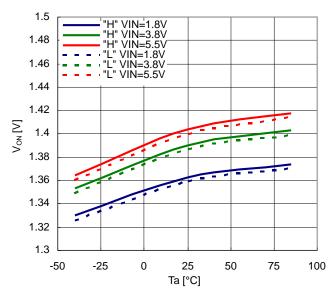

1) On Resistance vs. Input Voltage

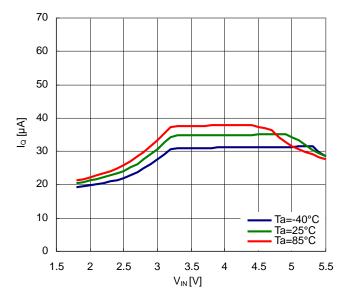

2) On Resistance vs. Temperature

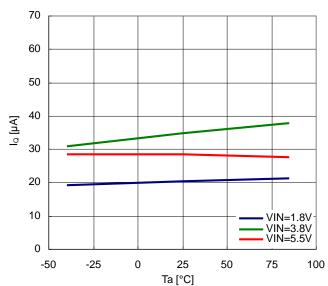

3) Off Supply Current vs. Input Voltage R5527K00xB/R5527K00xD

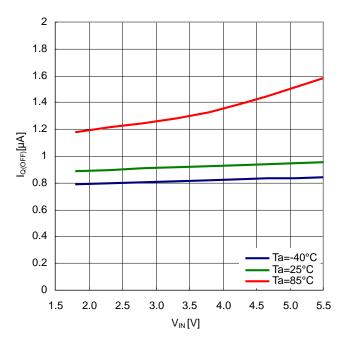

4) Off Supply Current vs. Temperature R5527K00xB/R5527K00xD

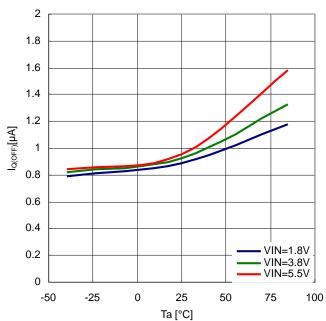

5) ON pin Pull-Down Current vs. Input Voltage R5527K00xB/R5527K00xD


6) ON pin Pull-Down Current vs. Temperature R5527K00xB/R5527K00xD

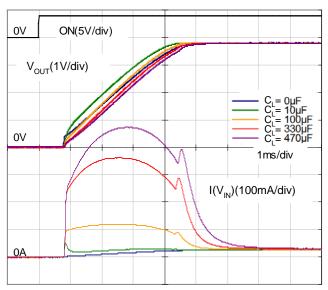

7) ON pin Logic Threshold vs. Input Voltage


8) ON pin Logic Threshold vs. Input Voltage


9) Quiescent Current vs. Input Voltage


10) Quiescent Current vs. Temperature

11) Off Supply Current vs. Input Voltage R5527K001A/R5527K001C


12) Off Supply Current vs. Temperature R5527K001A/R5527K001C

13) Inrush Current

R5527K00xB

Ta=25°C R_L=150 Ω

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website

https://www.n-redc.co.jp/en/

Contact us

https://www.n-redc.co.jp/en/buy/