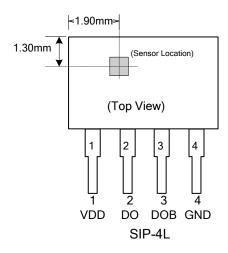


Single Phase Hall Effect Fan Driver

GENERAL DESCRIPTION

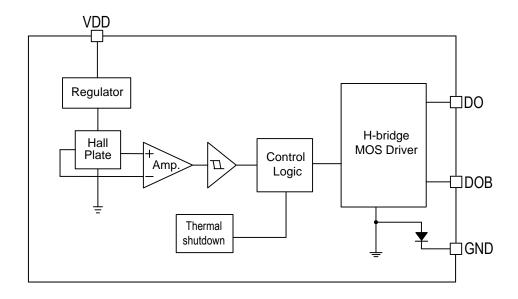
The MA7132 is an integrated Hall sensor with H-Bridged output driver designed for brushless DC motor applications. The device is using HV BCD process includes an on-chip Hall sensor for magnetic sensing, an amplifier that amplifies the Hall voltage, a comparator to provide switching hysteresis for noise rejection, a bi-directional drivers for sinking and driving large current load.


Placing the device in a variable magnetic field, if the magnetic flux density is larger than threshold BOP, the DO is turned to sink and DOB is turned to drive. This output state is held until the magnetic flux density reverses and falls below BRP, then causes DO to be turned to drive and DOB turned to sink.

❖ FEATURES

- On-Chip High sensitivity Hall-effect Sensor
- Operating Voltage: 3.5V to 20V
- H-Bridge Output Drivers for Single Coil
- Built-in Reverse Protection Diode
- Thermal Shutdown Protection
- Low Output Switching Current Noise
- -40°C to 125°C Operating Temperature
- Low Profile SIP-4L Package

❖ PIN ASSIGNMENT


The package of MA7132; the pin assignment is given by:

Name	Description
VDD	Supply Voltage
DO	Output 1
DOB	Output 2
GND	Ground.
FG	Frequency
1.6	Generation

❖ BLOCK DIAGRAM

RDER/MARKING INFORMATION

Order Information	Top Marking				
Package Type Packing P4: SIP-4L Blank: Tube A: Taping	7132 → Part number YYWWX → ID code:internal WW:01~52 → Year:19=2019				

A BSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit		
Supply Voltage	Vcc	-22 to 22	٧		
Magnetic Flux Density	В	Unlimited	Gauss		
	Continuous		200	mA	
Output Current	Hold	lo	300		
	Peak (start up)		500		
Power Dissipation	P _D	550	mW		
Storage Temperature Range	T_{STG}	-50 to +150	°C		
Junction temperature	TJ	150	°C		
Thermal Resistance from Junction to case	θ_{JC}	49	°C/W		
Thermal Resistance from Junction to ambien	θ_{JA}	227	°C/W		
Recommended Operating Conditions (T _A =	25 °C)				
Supply Voltage	Vcc	3.5 to 20	V		
Operating Temperature			-40 to 125	°C	

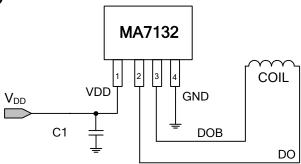
❖ ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 12V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Average Supply Current	I _{DD}	no load	-	3	5	mA
On resistance(RPMOS+RNMOS)	R _{DS(ON)}	300mA	-	3.2	-	Ω
Thermal Shutdown Threshold	T _{SHUT}		150	-	-	°C
Operating Point	Вор		5	20	40	Gauss
Releasing Point	B_RP		-40	-20	-5	Gauss
Hysteresis	B _{HYS}		-	40	-	Gauss

Note: Guaranteed by design.

Driver output vs. magnetic pole

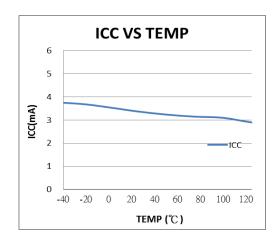

Characteristics	Test Conditions	DO	DOB	
North pole	B < Brp	High	Low	
South pole	B > Bop	Low	High	

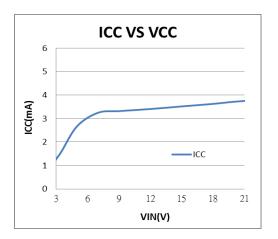
Note: The magnetic pole is applied facing the chip surface side of the package

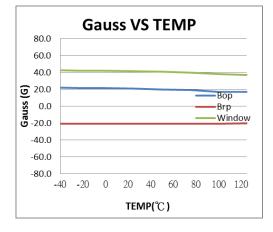
APPLICATION CIRCUIT

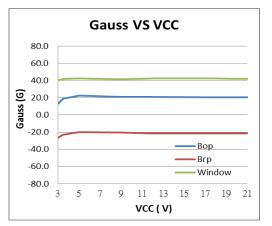
1. Circuit 1 (SIP)

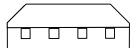
NOTE

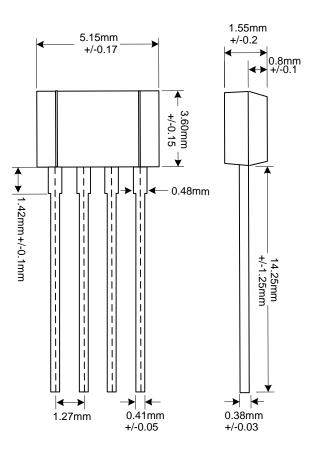

1. C1>=1uF(Option), Enhance the reliability during hot swap.




PERFORMANCE CHARACTERISTICS


T _A (°C)	25	50	60	70	80	85	90	95	100
PD (mW)	550	440	396	352	308	286	264	242	220
T _A (°C)	105	110	115	120	125	130	135	140	150
PD (mW)	198	176	154	132	110	88	66	44	0





❖ PACKAGE OUTLINES

1. SIP4

