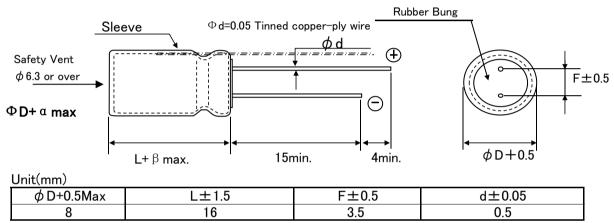
KNSCHA 全球高端电容器制造					
<u>规格承认书</u> Specification for approval					
客户名称:					
(Customer Name)					
产品名称:	铝电解电容				
(Product Name)	Aluminum El	ectrolytic Capa	citor		
客户料号:					
(Customer part number))				
科尼盛料号:	103EC072				
(KNSCHA number)	103EC072				
型号规格:	KNSCHA SHC 400V15μF Φ8*16 L=3.5mm				
(Specifications)	KNSCHA SH	C 400V15µF 🤇	⊅8*16 L=3.5ı	nm	
制造			客户		
(Manufactur	e)				
Approval 	核准	检验	Approval 审核	核准	
(Fiction) (Chief)	1≮ 7⊭ (Approval)	(Inspect)	甲 1% (Chief)	₁∡ ہ⊭ (Approval)	
刘淑芬 刘军军					
东莞市科尼盛电子有限公司 DONG GUAN KNSCHA ELECTRONICS CO.,LTD. No. 8th floor, A3 building, R&D center (Phase I), Songshan Lake Intelligent Valley, Liaobu Town, Dongguan City TEL:0769-83698067 81035570 FAX: 0769-83861559					
	570 EAY	v·n760_929615	50 1		

SHC Series

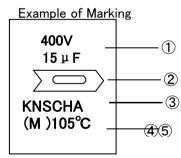
Aluminum Electrolytic Capacitors

Item Name	Rating	Case size	KNSCHA Lifetime
103EC072	SHC 400V15 μ F	Ф8*16L	5000 hours


1. Operating Temp. Range

-40°C ~ + 105°C

2. Electrical Characteristics


Table 1]					
Rated Voltage VDC	Surge Voltage VDC	Nominal Static Capacitance (<i>μ</i> F)	Tolerance on Capacitance(%) 20°C 120Hz	Dissipation Factor (tanδ)max 20°C 120Hz		Permissible Ripple Current (mArms)max 105°C100KHz
400	450	15	-20~+20	0.20	120	120

3. Dimensions

4. Marking

Following items are printed with white color on black color sleeve

- ① Rated voltage & Nominal Capacitance
- 2 Polarity (negative)
- ③ Trade Mark
- (4) Symbol of Capacitance Tolerance (M)
- (5) Max Operating Temp.

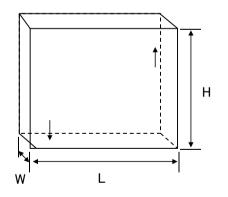
5.MULTIPLIER FOR RIPPLE CURRENT

(1).	Freque	ncy Coefficient
	/	$\Gamma_{\mu\nu} = (11-)$

	Freq.(Hz) Cap(μF)	60 (50)	120	300	1K	10K
	0.1-47	0.75	1.00	1.35	1.55	2.00
	68-680	0.80	1.00	1.25	1.34	1.50
	1000-22000	0.85	1.00	1.10	1.13	1.15
2.	Temperature Coef	ficient				
	Ambient Temperature(°C)	40	60	70	85	105
	Coefficient	2.40	2.10	1.78	1.65	1.00

6. Characteristics

No.	Item	Perfor	mance	Test Method	
1	Leakage Current	I= 120.0 μA I= Max Leakage Currer C=Ctatic Capacitor: V=		Protection Resistor : $1000\pm10\Omega$ Applied Volt : Rated Voltage Mesauring time : 2minutes	
2	Static Capacitance	12 \sim 18 μ F		Measured Frequency : 120Hz±20% Measured Voltage ≤ 0.5Vrms, 1.5 ~ 2.0VDC	
3	Dissiption Factor (tanδ)	0.20 and Under		Same as condition of Capacitors	
4	High Temp. Load Charac- teristics	Cap. Change $\leq \pm 2$ Dissipation Factor ≤ 200	e value specified in Table 1 20% of initial value 0% of value specified in Table emarkable abnormality	Test Temp. : 105±2°C Applied voltage: Rated voltage Test Time :5,000 hours +72, −0 hours	
5	High Temp. no load Charac- teristics	Cap. Change $\leq \pm 2$ Dissipation Factor ≤ 200	e value specified in Table 1 20% of initial value 0% of value specified in Table emarkable abnormality	Test Temp.: 105±2°C No voltage applied Test Time :1000 hours +24, -0 hurs	
6	Terminal Strength		5N {4.5kg} 5N {2.5kg}	Keeping time Tensile 1~5sec Bending 30±5sec	
7	Impedance Ratio	W V <u>Z-25°C/Z+20°</u> Z-40°C/Z+20°			
8	Temperature Charac – teristics	StageItemPerformanceStageTest Temp(°C2,3Impedance Ratioless than the value mentioned in 5–7,1 20 ± 2 5Cap, Change $\leq \pm 25\%$ against value in stage 42 -25 ± 3 ;3 -25 ± 3 ;4 20 ± 2 After the capacitor is held at tempereture of each stage and reaches temperature stability, measure performance.5 105 ± 2			
9	Surge Voltage	Item Perforemance Leakage Current ≤ the initial specified value Cap, Change ≤ ±15% against value before te Dissipation Factor ≤ the initial specified value Appearance No remakable abnormality Test Temp. 15~35°C Test volt. Surge Volt.Specified Voltage apply. 1,000times of chage for 30±5sec, under free and discharge for 5min30sec. 1		fore test ue y Specified in 2	


No,KNS-2003001 (2/5)

6-2. Characteristics

No.	Item	Performance	Test Method
10	Vibration Resistance	CapacitanceStability requiredCap. Change≤±5% of the initial specifiAppearanceNo remarkable abnormaliFrequency : 10~55Hz/1min. Width of vibratiY and Z directions, each for 2 hours (Total	ity tion, 1.5mm Direction and duration X,
11	Solderbility	3/4 area of surrounding directions of surface should be covered with new solder.	Solder: Sn-Ag, Sn-Cu Type Soldering Temp : $240\pm5^{\circ}$ C Dipping degree : $2\sim2.5$ mm Flux : Ethanol solution (JIS K8101) or Isopropylalchol (JIS K8839) solution of Rosin (JIS K5902)
12	Resistance to Soldering	Leakage Current \leq Initial specified valueCap. Change $\leq \pm 10\%$ of initial valueDissipation Factor \leq Initial specified in valueAppearanceNo remarkable abnormality	Soldering Temp. 280±5°C Soldering Time . 10±1sec.
13	Resistance to Humidity	Leakage Current \leq Initial specified valueCap. Change $\leq \pm 15\%$ of initial valueDissipation Factor \leq Initial spesified valueAppearanceNo remarkable abnormality	Test Temp. : $40 \pm 2^{\circ}$ C Humidity $90 \sim 95\%$ Test Time : 500 ± 8 hours After the above condition,restored to normal temp, and then measured.
14	Perssure valve moment charact– erstics	There must not be thing ignition, scattering the resolution that that case works safely	Dcmethod: impress the reverse voltage and of 1A, I cancel an electric current.

7 Packing method

Packaging shape, size, quantity

Component	Quanity
size	per
8*16	16000pcs.

Related Standards JIS C 5141 8

Marking on packing box 9

- Item name
 Series name
- 3 Rated Voltage
- (4) Nominal Static Capacitance
- (5) Case size
- 6 Lot No.
- ⑦ Quantity

10 Soldeing

10-1 Soldering by soldering iron

> Temperature of iron top : 270~350°C Operating time : within 3 sec.

10-2 Flow soldering.

> Preheat : PCB surface temperature 120°C±5°C Solder Temp : 260°C±5°C Solder Dipping Temp. : 2~4sec.

11 Cleaning of PC boad after soldering

Using follwing solvents is possible but make sure followingcondition Solvent IPA or Alcoholic agent like Pinealpha ST-100S, Cleanthrough 750H, 750L, 710M, 750K, or Technocare FRW-14~17

- (1) Cleaning should be made by ultrasonic within 5min, at the temperature less then 60° C.
- (2) Control of pollution is necessary (conductivity,pri, specific gravity, state of a Please let it dry by hot air at the temperature less than maximum operating temp.

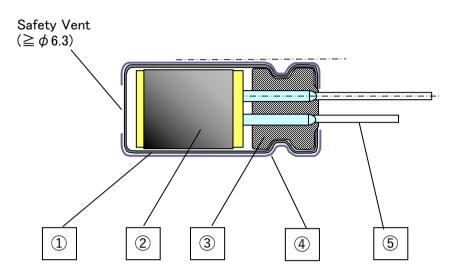
12 The situation of using

Please do not use a condenser in the next use environment.

- (1) One circumference environment(weatherability) condition.
- (a) Direct water, salt water and environment oil works or become a dew condensation state.
- (b) Environment full of harmful gas (a hydrogen chloride, sulfurous acid. nitrous acid hydrochloric acid, ammonia).
- (c) Ozone, infrared rays and the environment where radioactive rays are done collation of
- (2) Vibration shock condition is extreme environment more than rule ranges of delivery specifications.

13 A country of origin

A country of origin of an SHC series alminum electrolysis condenser of specifications: China


14 Effective life for storage

Storage conditions:

- (1) Temperature range must be between 5-35°C
- (2) Relative humidity must be less than 75%
- (3) Must be stored indoor
- (4) Must be free from water, oil or salt water
- (5) Must be free from toxic gasses (hydrogen sulfide, sulfurous acid, chlorine, ammonium, etc.)
- 6 Must be free from ozone, ultraviolet rays or any other radiation
- \bigcirc Must be kept in capacitor original package
- I Storage life is 12 months for capacitor of rated voltage \leqslant 160V
- I Storage life is 6 months for capacitor of rated voltage \geq 200V

No,KNS-2003001 (4/5)

Aluminum Electrolytic Capacitor SHC Series Structure

No.	Name	Material
1	Case	Aluminum
	Element (Electrode)	High Purity Aluminum foil
2	(Separator)	Manila hemp pulp
	(Electrolyte)	
3	Rubber Bung	Synthetic Rubber
4	Sleeve	PET
5	Lead Wire	Tin plated Steel Wire

Controls of ozone layer destructive chemical materials

Regulated materials : CFCs, Halon, Carbon Tetrachloride, 1.1.1–Trichloroethane The products and parts do not include the above materials The products and parts are not used the above materials on process.

The products and parts are not used PBBOs (Poly Bromo Bi-phenyl Oxides).

All materials are mentioned as existing chemical material in the "Law of examine and control of Production of Chemical Material"

The products are not listed in Appendix 1 of Export Trade Rule and Regulation

A condenser of this series supports RoHS regulation.