Data Sheet

1.5 Amp Output Current IGBT Gate Drive Optocoupler with Rail-to-Rail Output Voltage, High CMR.

1. DESCRIPTION

The LTV-155E-L-S optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 1.5A peak output current is capable of directly driving most IGBTs with ratings up to $1200 \mathrm{~V} / 50 \mathrm{~A}$. For IGBTs with higher ratings, the LTV-155E-L-S series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.

1.1 Features

- 1.5 A maximum peak output current driving capability

■ Rail-to-rail output voltage

- 200 ns maximum propagation delay
- 70 ns maximum propagation delay difference
- $35 \mathrm{kV} / \mathrm{us}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{CC}}=3.0 \mathrm{~mA}$ maximum supply current

■ Wide operating range: 10 to 30 Volts (V_{CC})

- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 3750 VmMs $_{\text {R }} 1 \mathrm{~min}$
- IEC/EN/DIN EN 60747-5-5 $\mathrm{V}_{\text {IORM }}=565 \mathrm{~V}_{\text {peak }}$

1.2 Applications

- Plasma Display Panel .
- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- Induction heating

Functional Diagram

Pin No. and Internal connection diagram

$\begin{array}{lll}\text { Truth Table } & 2\end{array}$

LED	High side	Low side	Vo
OFF	OFF	ON	Low
ON	ON	OFF	High

Note: A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between Pin 4 and 6.

2. PACKAGE DIMENSIONS

Part No : LTV-155E-L-S

Notes:

1. The first digit is year date code, second and third digit are work week
2. Factory identification mark (W :China-CZ)
3. " 4 " or " V " for VDE option

Dimensions are all in Millimeters.

Photocoupler
LTV-155E-L-S series

3. TAPING DIMENSIONS

3.1 LTV-155E-L-S

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$12 \pm 0.3(0.47)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$5.5 \pm 0.1(0.217)$
	P_{2}	$2 \pm 0.1(0.079)$

3.2 Quantities Per Reel

Package Type	LTV-155E-L-S series
Quantities (pcs)	3000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+105	${ }^{\circ} \mathrm{C}$	
Total Output Supply Voltage	$\left(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}\right)$	0	35	V	
Average Forward Input Current	I_{F}		25	mA	
Reverse Input Voltage	$V_{\text {R }}$		5	V	
Peak Transient Input Current	$\mathrm{IF}_{\text {(TRAN }}$		1	A	1
"High" Peak Output Current	ІОН(PEAK)		1.5	A	2
"Low" Peak Output Current	lolpeak)		1.5	A	2
Input Current (Rise/Fall Time)	$\mathrm{t}_{\text {(}}(\mathbb{N}) / \mathrm{t}_{\mathrm{f}}(\mathbb{N})$		500	ns	3
Output Voltage	$\mathrm{V}_{\text {(PEAK) }}$	-0.5	V_{cc}	V	
Power Dissipation	P_{1}		45	mW	
Output Power Dissipation	Po		600	mW	
Total Power Dissipation	$\mathrm{P}_{\text {T }}$		645	mW	
Lead Solder Temperature	$\mathrm{T}_{\text {sol }}$		260	${ }^{\circ} \mathrm{C}$	

Note: Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
Note: Note: A ceramic capacitor ($0.1 \mu \mathrm{~F}$) should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.
Note 1: Pulse width $(P W) \leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$
Note 3: The rise and fall times of the input on-current should be less than 500 ns

4.2 Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Supplier Voltage	V_{CC}	10	30	V
Input Current (ON)	$\mathrm{I}_{\text {F(ON) }}$	7	12	mA
Input Voltage (OFF)	$\mathrm{V}_{\text {F(OFF) }}$	-3.0	0.8	V

4.3 Electrical optical characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	V_{F}	1.2	1.37	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	13	-
	Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$	-	-1.237	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	-
	Input Reverse Voltage	BV_{R}	5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	-	-
	Input Threshold Current (Low to High)	$I_{\text {FLH }}$	-	2	5	mA	$\mathrm{V} \mathrm{O}>5 \mathrm{~V}, \mathrm{l}_{0}=0 \mathrm{~A}$	$\begin{gathered} 6, \\ 7,18 \end{gathered}$	-
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\text {FHL }}$	0.8	-	-	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{l}_{0}=0 \mathrm{~A}$	-	-
	Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	33	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	-	-
Output	High Level Supply Current	ICCH	-	1.7	3.0	mA	Output Open, $I_{F}=7 \text { to } 16 \mathrm{~mA}$	4, 5	-
	Low Level Supply Current	$\mathrm{I}_{\text {ccl }}$	-	2.0	3.0	mA	Output Open, $V_{F}=-3 \text { to }+0.8 \mathrm{~V}$		-
	High level output current	Іон	-	-	-0.4	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}\right)$	16	1
			-	-	-1.5		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-6 \mathrm{~V}\right)$		2
	Low level output current	loL	0.4	-	-	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+2 \mathrm{~V}\right)$	17	1
			1.5	-	-		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+6 \mathrm{~V}\right)$		2
	High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} V_{C C} \\ 0.6 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{Cc}} \\ 0.3 \end{gathered}$	-	V	$\begin{aligned} & \mathrm{I}_{F}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1,2, \\ 14 \end{gathered}$	-
	Low level output voltage	VoL	-	$\begin{aligned} & V_{\text {EE }+} \\ & 0.25 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.4 \end{gathered}$	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{l}_{0}=100 \mathrm{~mA}$	3, 15	-
	UVLO Threshold	VuvLo+	6.9	7.8	8.7	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	19	-
		Vuvlo.	5.9	6.7	7.5	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		-
	UVLO Hysteresis	UVLOHys	-	1.1	-	V		-	-

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Maximum pulse width $=50 \mu \mathrm{~s}$.
Note 2: Maximum pulse width $=10 \mu \mathrm{~s}$.

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note	
Propagation Delay Time to High Output Level	tphL	50	-	200	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=47 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=3 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	$\begin{gathered} 8,9,10 \\ 11,12 \\ 20 \end{gathered}$	-	
Propagation Delay Time to Low Output Level	tpıH	50	-	200				-	
Pulse Width Distortion	PWD	-	15	70				-	
Propagation delay difference between any two parts or channels	PDD	100	-	100				3	
Output Rise Time (20 to 80\%)	Tr	-	35	-			20	-	
Output Fall Time (80 to 20\%)	Tf	-	35	-				-	
Common mode transient immunity at high level output	\|CMH		35	-	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	21	1
Common mode transient immunity at low level output	\|CML		35	-	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		2

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: CM_{H} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$).

Note 2: CM_{L} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{V}_{\mathrm{o}}<1 \mathrm{~V}$).

Note 3: The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two parts series parts under same test conditions.
\square

6. ISOLATION CHARACTERISTICS

Parameter	Test Conditions	Symbol	Min.	Typ	Max.	Unit	Note
Withstand Insulation Test Voltage	$\begin{aligned} & R H \leq 40-60 \%, \\ & t=1 \mathrm{~min}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	VISO	3750	-	-	V	1,2
Input-Output Resistance	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V}$ DC	$\mathrm{R}_{1-\mathrm{O}}$	-	10^{12}	-	Ω	1
Input-Output Capacitance	$f=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{Cl}_{1} \mathrm{O}$	-	0.92	-	pF	1

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Device is considered a two terminal device: pins 1 and 3 are shorted together and pins 4,5 and 6 are shorted together.
Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage $4500 \mathrm{~V}_{\text {rms }}$ for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge

7. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS

Figure 1: High output rail voltage vs. Temperature

Figure 3: Vol vs. Temperature

Figure 5: Icc vs. Vcc

Figure 2: Vон vs. Temperature

Figure 4: Icc vs. Temperature

Figure 6: IfLH Hysteresis

Photocoupler LTV-155E-L-S series

Figure 7: $I_{\text {FLH }}$ vs. Temperature

Figure 9: Propagation Delays vs. I_{F}

Figure 11: Voh vs. loph

Figure 8: Propagation Delays vs. Vcc

Figure 10: Propagation Delays vs. Temperature

Figure 12: Vol vs. Iopl

Data Sheet

Photocoupler LTV-155E-L-S series

Figure 13 : I_{F} vs. V_{F}

Figure 14 : Voн Test Circuit

Figure 16 : Іон Test Circuit

Figure 18 : Iflh Test Circuit

Figure 15 : Vol Test Circuit

Figure 17 : Iol Test Circuit

Figure 19 : UVLO Test Circuit

LITECON1
OPTOELECTRONIC

Data Sheet

Photocoupler LTV-155E-L-S series

Figure 20 : tr, tr, tpLh and tphl Test Circuit and Waveforms

Figure 21 : CMR Test Circuit and Waveforms

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\text {smin }}$) - Temperature Max ($\mathrm{T}_{\text {smax }}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{aligned} & 217^{\circ} \mathrm{C} \\ & 60 \mathrm{sec} \end{aligned}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} /$ sec max.
Ramp-down rate	$3 \sim 6{ }^{\circ} \mathrm{C} / \mathrm{sec}$

LITEOMN ${ }^{\circ}$
OPTOELECTRONICS

8.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature: 25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

9. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

