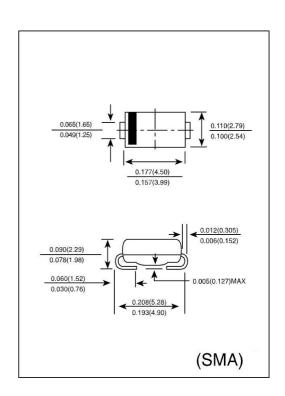


FEATURES


- · Glass passivated chip junction
- Ideal for surface mounted applications
- · Low leakage
- High forward surge current capability.
- High temperature soldering guaranteed: 260°C/10 seconds at terminals.

MECHANICAL DATA

- Case: Transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant.
- · Polarity: Color band denotes cathode end
- Lead: Plated terminals solderable per MIL STD 202E method 208C
- Weight: 0.002 ounce, 0.057 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

- Ratings at 25°C ambient temperature unless otherwise specified
- Single phase, half wave, 60Hz, resistive or inductive load.
- For capacitive load derate current by 20%

CatalogNumber	SYMBOLS	1N4007	UNITS
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	1000	Volts
Maximum RMS Voltage	V_{RMS}	700	Volts
Maximum DC Blocking Voltage	V_{DC}	1000	Volts
Maximum Average Forward Rectified Current, at $T_A = 75^{\circ}C$	$I_{(AV)}$	1.0	Amp
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	${ m I}_{ m FSM}$	30	Amps
Maximum Instantaneous Forward Voltage Drop at 1.0A	V_{F}	1.1	Volts
Maximum DC Reverse Current at rated DC blocking voltage $\frac{T_C = 25^{\circ}C}{T_A = 125^{\circ}C}$	I _R	5.0 50	μ A
Maximum Full Load Reverse Current, full cycle average at $T_A = 75^{\circ}C$	$I_{R(AV)}$	30	μΑ
Typical Junction Capacitance (Note 1)	C_{J}	15	pF
Typical Thermal Resistane (Note 2)	$R_{ heta JA}$	75	°C/w
Operating and Storage Temperature Range	T_J,T_{STG}	(-65 to +175)	$^{\circ}\mathbb{C}$

NOTES:

- 1. Measured at 1.0 MHz and applied aberage voltage of 4.0 volts.
- 2. 6.0 X 6.0mm² copper pads to each terminal.

www.yongyutai.com PAGE 1

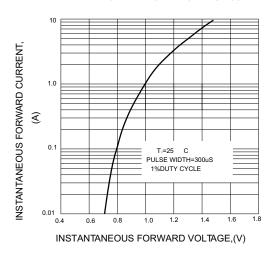
FIG.1-TYPICAL FORWARD CURRENT DERATING CURVE AVERAGE FORWARD CURRENT, 1.0 0.8 € 0.6 0.4 Resistive or 0.2 0.375"(9.5mm) Lead Length 0 75 175 100 50 AMBIENT TEMPERATURE, (C)

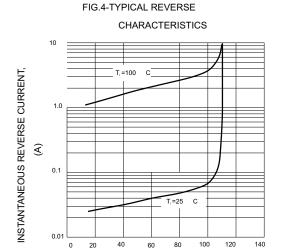
FIG.2-MAXIMUM NON-REPETITIVE PEAK

FORWARD SURGE CURRENT

30

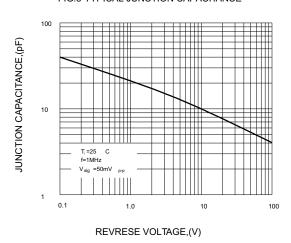
8.3ms Single Half Sine-Wave (JEDEC Method) = 1T_j jmax


1 Cycle


1 Cycle

1 Cycle

NUMBER OF CYCLES AT 60 Hz



PERCENT OF RATED PEAK REVERSE VOLTAGE,(%)

FIG.5-TYPICAL JUNCTION CAPACITANCE

www.yongyutai.com PAGE 2