ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

MOSFET – Power, Single N-Channel, **TDFNW8 DUAL COOL[®]** 150 V, 4.45 mΩ, 174 A

NTMTSC4D3N15MC

Features

- Small Footprint (8x8 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

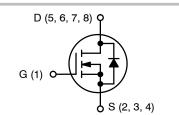
Typical Applications

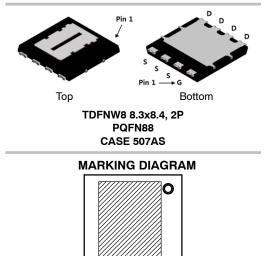
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parar	neter		Value	Unit
V _{DSS}	Drain-to-Source Voltage			150	V
V _{GS}	Gate-to-Source Voltag	е		±20	V
I _D	Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steady State	$T_C = 25^{\circ}C$	174	A
PD	Power Dissipation $R_{\theta JC}$ (Note 2)			293	W
۱ _D	Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State	T _A = 25°C	22	A
PD	Power Dissipation $R_{\theta JA}$ (Notes 1, 2)			5	W
I _{DM}	Pulsed Drain Current	T _A = 25°C	, t _p = 10 μs	900	А
T _J , T _{stg}	Operating Junction and Range	Storage Te	emperature	–55 to +175	°C
I _S	Source Current (Body Diode)			244	А
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _L = 48.5 A _{pk} , L = 0.3 mH)			354	mJ
ΤL	Lead Temperature Sold Soldering Purposes (1/			260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	$4.45~\mathrm{m}\Omega @~10~\mathrm{V}$	174 A
130 V	5 mΩ @ 8 V	1177

N-CHANNEL MOSFET

4D3N15M AWLYW

4D3N15M = Specific Device Code

= Assembly Location А

- = Wafer Lot Code WI Y
 - = Year Code
- W = Work Week Code

ORDERING INFORMATION

Device	Device Package	
NTMTSC4D3N15MC	TDFNW8 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2019 November, 2020 - Rev. 0

THERMAL RESISTANCE RATINGS

Symbol	Parameter	Мах	Unit
$R_{\theta JC}$	Junction-to-Case - Steady State (Note 2)	0.5	°C/W
$R_{ hetaJA}$	Junction-to-Ambient - Steady State (Note 2)	30	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHARACT	ERISTICS						-
V _{(BR)DSS}	Drain – to – Source Breakdown Voltage	V _{GS} = 0 V, I _D =	= 250 μA	150	-	-	V
$V_{(BR)DSS}/T_J$	Drain – to – Source Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, ref to $25^{\circ}C$		-	49.84	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0 V,$ $T_J = 25^{\circ}C$		-	-	1	μA
		V _{DS} = 120 V	T _J = 125°C	-	-	10	μA
I _{GSS}	Gate - to - Source Leakage Current	$V_{DS} = 0 V, V_{GS} = \pm 20 V$		-	-	±100	nA
ON CHARACTE	ERISTICS (Note 3)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D$	= 521 μA	2.5	3.6	4.5	V
				-	-	1	

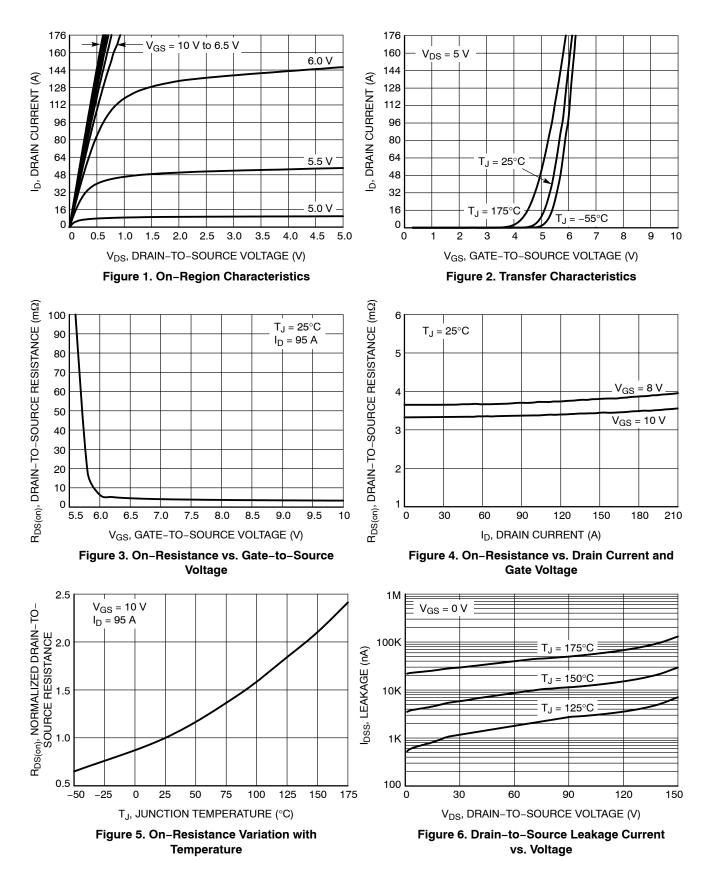
- G3(TH)		· d3 · D3, ·D · = · p. ·				-
V _{GS(TH)} / T _J	Negative Threshold Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, ref to 25°C	-	-9.93	-	mV/°C
R _{DS(on)}	Drain – to – Source On Resistance	V_{GS} = 10 V, I _D = 95 A	-	3.4	4.45	mΩ
		$V_{GS} = 8 V, I_D = 47 A$	-	3.7	5	
9fs	Forward Transconductance	$V_{DS} = 5 V, I_D = 95 A$	-	177	-	S
R _G	Gate-Resistance	$T_A = 25^{\circ}C$	-	1.1	-	Ω

CHARGES & CAPACITANCES

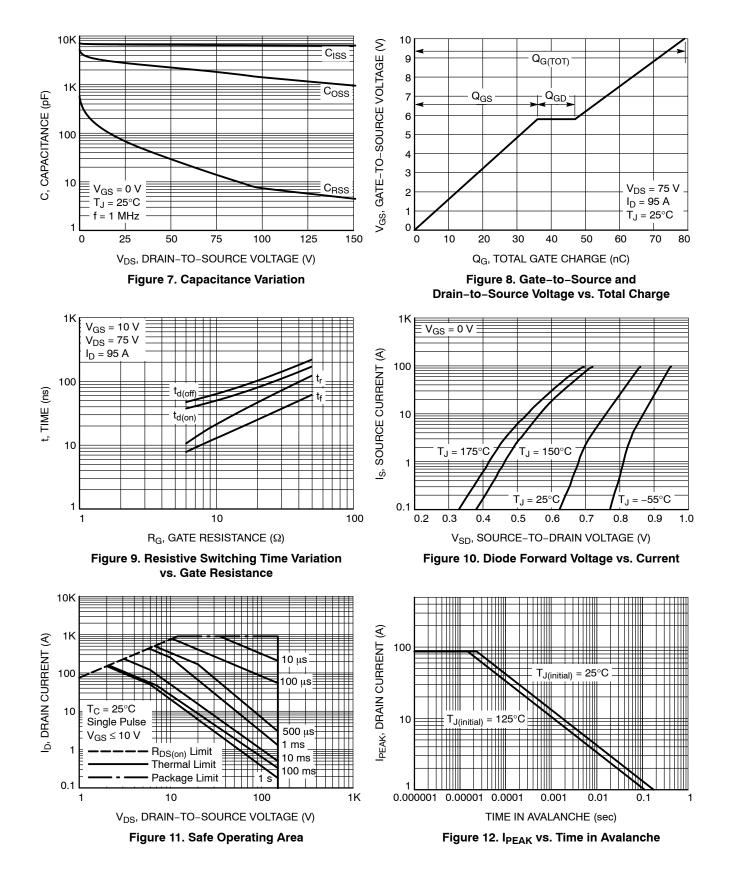
C _{ISS}	Input Capacitance	$V_{GS} = 0 V, f = 1 MHz,$	-	6514	-	pF
C _{OSS}	Output Capacitance	– V _{DS} = 75 V	-	1750	-	
C _{RSS}	Reverse Transfer Capacitance		-	12.5	-	
Q _{G(TOT)}	Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 75 \text{ V},$	-	79	-	nC
Q _{G(TH)}	Threshold Gate Charge	I _D = 95 A	-	21	-	
Q _{GS}	Gate-to-Source Charge		-	36	-	
Q _{GD}	Gate-to-Drain Charge		-	11	-	
V _{GP}	Plateau Voltage		-	5.8	-	
Q _{OSS}	Output Charge	V_{GS} = 0 V, V_{DS} = 75 V	-	225	-	nC

SWITCHING CHARACTERISTICS, V_{GS} = 10 V (Note 3)

t _{d(ON)}	Turn – On Delay Time	$V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V},$	-	38	-	ns
t _r	Rise Time	$I_D = 95 \text{ A}, \text{ R}_G = 6 \Omega$	-	11	-	
t _{d(OFF)}	Turn – Off Delay Time		-	48	-	
t _f	Fall Time		-	8	-	


DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Forward Diode Voltage	V _{GS} = 0 V, I _S = 95 A	$T_J = 25^{\circ}C$	-	0.86	1.2	V
		I _S = 95 A	T _J = 125°C	-	0.80	-	
t _{RR}	Reverse Recovery Time	$V_{GS} = 0 V, dI_S/d$	dt = 100 A/μs,	-	85	-	ns
ta	Charge Time	I _S = 95 A		-	58	-	
t _b	Discharge Time			-	38	-	
Q _{RR}	Reverse Recovery Charge			-	194	-	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3. Switching characteristics are independent of operating junction temperatures

www.onsemi.com

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

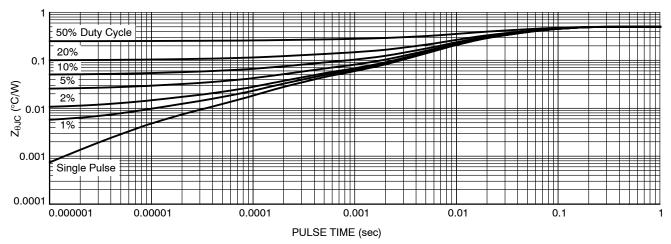
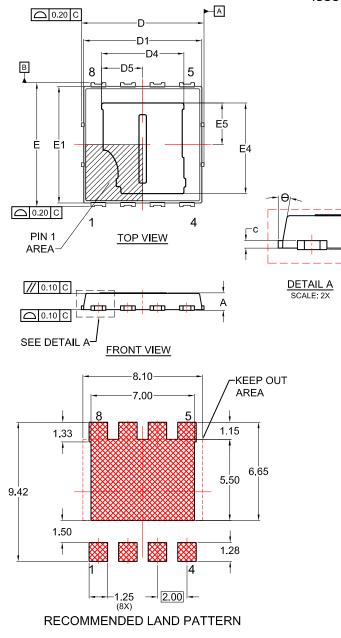
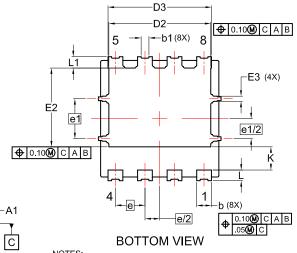




Figure 13. Thermal Characteristics

PACKAGE DIMENSIONS

TDFNW8 8.3x8.4, 2P CASE 507AS **ISSUE A**

- NOTES:
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS
- WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
 SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	N	IILLIMET	ERS
DIM	MIN.	NOM.	MAX.
А	0.82	0.92	1.02
A1	0.00		0.05
b	0.90	1.00	1.10
b1	0.43	0.53	0.63
с	0.23	0.28	0.33
D	8.20	8.30	8.40
D1	7.90	8.00	8.10
D2	6.80	6.90	7.00
D3	6.90	7.00	7.10
D4	5.47	5.57	5.67
D5	2.69	2.79	2.89
Е	8.30	8.40	8.50
E1	7.80	7.90	8.00
E2	5.24	5.34	5.44
E3	0.25	0.35	0.45
E4	6.03	6.13	6.23
E5	2.72	2.82	2.92
е		2.00 BS	С
e/2		1.00 BS	С
e1		2.70 BS	С
e1/2		1.35 BS	С
к	1.50	1.57	1.70
L	0.64	0.74	0.84
L1	0.67	0.77	0.87
θ	0°		12°

DUAL COOL is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or deat

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative