MOSFET - Power, Single N-Channel, SO8-FL

30 V, 0.62 mΩ, 433 A

NTMFS0D6N03C

Features

- Advanced Package (5x6mm) with Excellent Thermal Conduction
- Ultra Low R_{DS(on)} to Improve System Efficiency
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

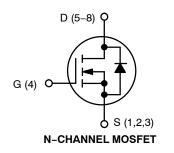
- ORing
- Motor Drive
- Power Load Switch
- Battery Management and Protection

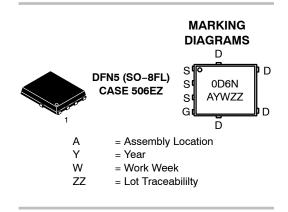
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	$T_{C} = 25^{\circ}C$	۱ _D	433	А
Current R _{θJC} (Note 2)		T _C =100°C		306	
Power Dissipation $R_{\theta JC}$ (Note 2)	State	T _C = 25°C	PD	200	W
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	60	А
Current R _{θJA} (Notes 1, 2)		T _A = 100°C		42	
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	State	T _A = 25°C	P _D	3.9	W
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	900	А
Source Current (Body Diode)			۱ _S	156	А
Single Pulse Drain-to-Source Avalanche Energy (I _L = 45.4 A _{pk})			E _{AS}	1032	mJ
Operating Junction and Storage Temperature Range			T _J , T _{STG}	–55 to +175	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 in² pad, 2 oz Cu pad.


The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.



ON Semiconductor®

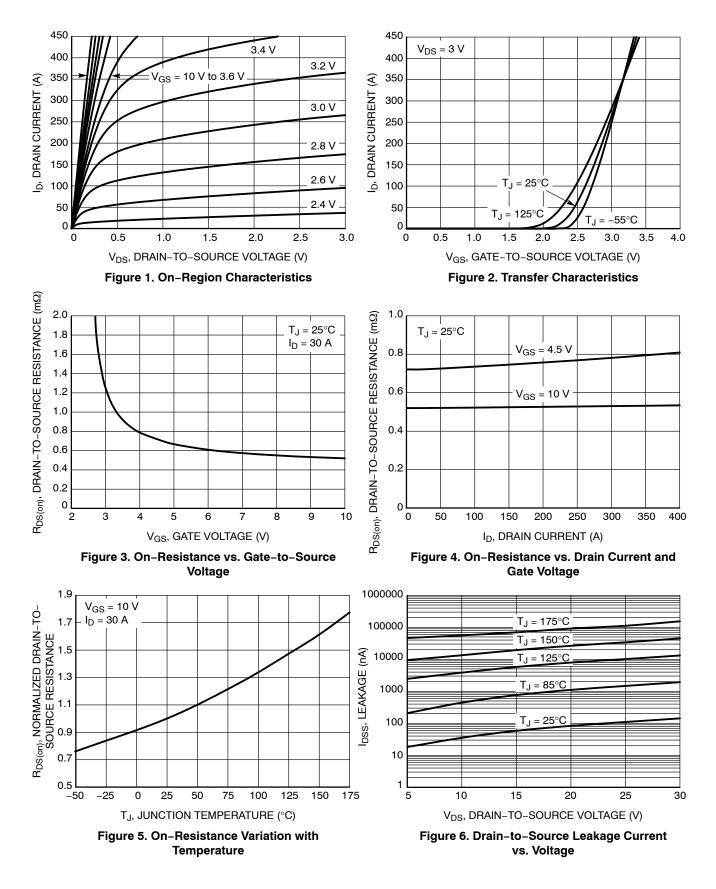
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	$0.62~\mathrm{m}\Omega @~10~\mathrm{V}$	433 A
50 V	0.9 mΩ @ 4.5 V	100 7

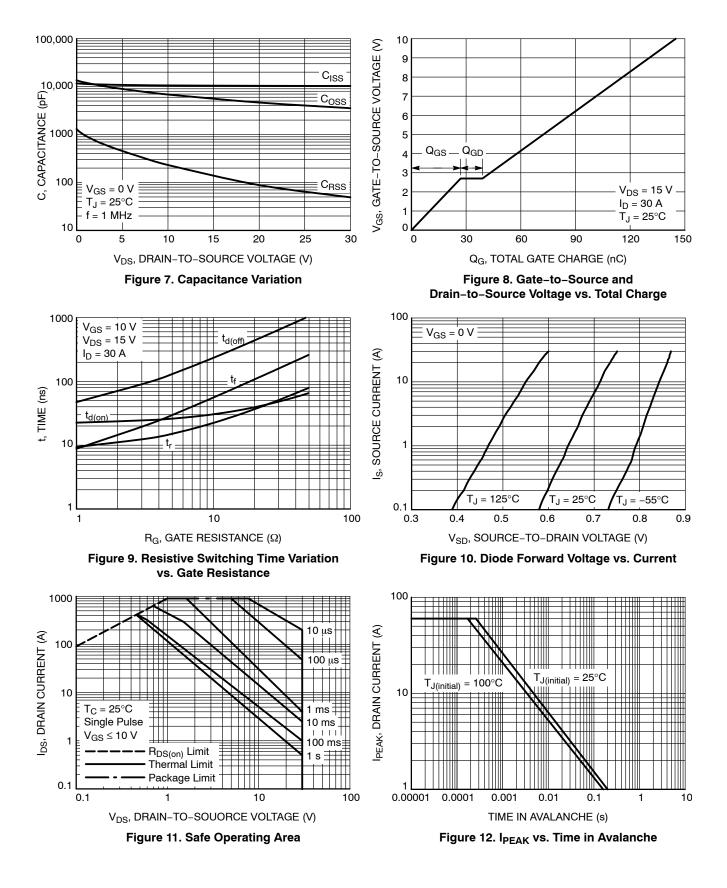
ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS


Parameter	Symbol	Value	Unit	
Junction-to-Case - Steady State (Note 1)	$R_{ ext{ heta}JC}$	0.8	°C 44/	
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	38	8 °C/W	
Junction-to-Ambient - Steady State (Note 2)	R_{\thetaJA}	134	°C/W	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					1		-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I_D = 250 µA. ref to 25°C			12		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 30 V	$T_J = 25^{\circ}C$			1.0	μΑ
			T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_G$	_S = 20 V			100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 280 μA	1.3		2.2	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 280 μA. ref to 25°C			-5.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 30 A			0.52	0.62	mΩ
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 4.5 V,$	_D = 30 A		0.72	0.9	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 3 V, I _D = 30 A			150		S
Gate Resistance	R _G	$T_A = 25^{\circ}C$			0.4		Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz			10500		pF
Output Capacitance	C _{OSS}				5740		
Reverse Transfer Capacitance	C _{RSS}				161		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$ $V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$			65		nC
Threshold Gate Charge	Q _{G(TH)}				16		
Gate-to-Drain Charge	Q _{GD}				12		
Gate-to-Source Charge	Q _{GS}				27		
Total Gate Charge	Q _{G(TOT)}				145		nC
SWITCHING CHARACTERISTICS (Note	4)						
Turn–On Delay Time	t _{d(ON)}				24		
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 30 A, R_{G} = 3.0 Ω			12		ns
Turn-Off Delay Time	t _{d(OFF)}				89		
Fall Time	t _f				19		
DRAIN-SOURCE DIODE CHARACTERIS	STICS			-			•
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.75	1.2	
	$I_{\rm S} = 30 \text{A}$ $T_{\rm J} = 125^{\circ} \text{C}$	$T_J = 125^{\circ}C$		0.60		V	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dlS/dt = 100 A/μs, V _{DS} = 15 V, l _S = 30 A			97		ns
Reverse Recovery Charge	Q _{RR}				135		nC

3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

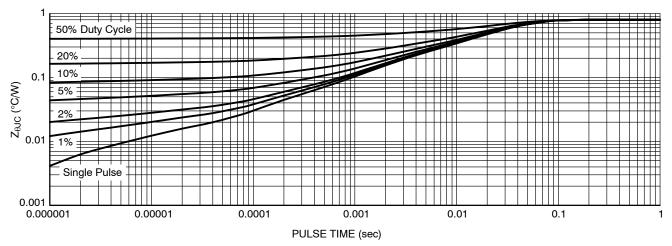
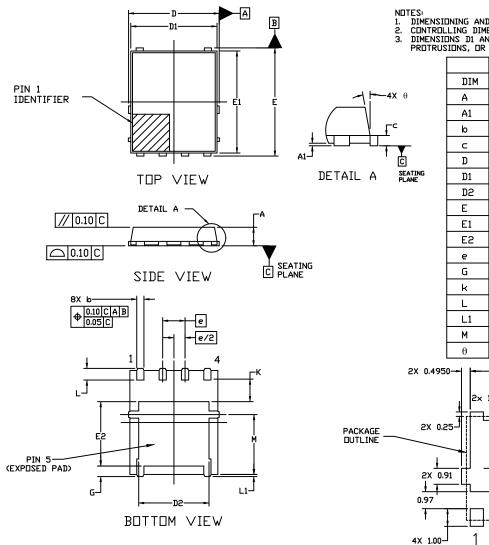
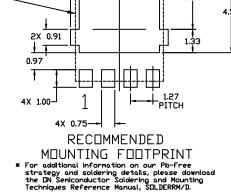


Figure 13. Thermal Characteristics


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFS0D6N03CT1G	0D6N	DFN5 (Pb–Free)	1500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

DFN5 5x6, 1.27P (SO-8FL) CASE 506EZ ISSUE O

NDTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. 2. CONTROLLING DIMENSION: MILLIMETERS 3. DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, DR GATE BURRS.

MILLIMETERS MIN. NDM. MAX. 0.90 1.00 1.10 0.05 0.00 ___ 0.33 0.41 0.51 0.23 0.28 0.33 5.00 5.15 5.30 4.70 4.90 5.10 3.80 4.00 4.20 6.00 6.15 6.30 5.70 5.90 6.10 3.85 3.45 3.65 1.27 BSC 0.51 0.575 0.71 1.10 1.20 1.40 0.51 0.575 0.71 1.25 REF 3.00 3.40 3.80 0° ____ 12* 4.56 2x 1.53-3.20 4 1.33

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative