

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(**客戶**): 志盛翔

DATE :

(日期):2021-09-30

CATEGORY (品名) DESCRIPTION (型号)	•		MINUM ELECTROLYTIC CAPACITORS 50V820μF(φ12.5X20)
VERSION (版本) Customer P/N		01	
SUPPLIER	•		

SUPPL	IER	CUSTOMER				
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)			
邓文文	付婷婷					

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SPECIFICATION					ALTERNATION HISTORY RECORDS			
D	D	GT SERI		C				
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approve	

Version	01		Page	1
---------	----	--	------	---

	MAN YUE ELECT COMPANY LIM			CA SPEC	CTROLY APACITO CIFICAT T SERIE	PR ION			SA	AMXO	N		
Tat	ole 1 Product Dime	nsions and	Characterist	ics						Unit:	mm		
		- L+2.0/-2		d±0.05		[Shape Code	,	D L	12.5 20			
	D±0.5			= <u>F±0.5</u>			CS Type		F H d	5.0 12 0.6			
			H±0.5	5									
	e 1:	WV	p Cap	Temp	tan ð	Leakage	Max Ripple	Impedance	Load		ension mm)		Sleev
°abl ∿	e 1: SAMXON Part No.	WV Ca (Vdc) (µ	P. Cap. F) tolerance	Temp. range(°C)	tan δ (120Hz, 20°C)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA rms)	Impedance at 20°C 100KHz (Ωmax)	Load lifetime (Hrs)		ension mm) F	фd	Sleev e

1				
	Version	01	Page	9
	v er stoll	01	I age	2

C O N T E N T S	Sheet
Application	4
Part Number System	4
Construction	5
Characteristics	5~10
Rated voltage & Surge voltage	
2 Capacitance (Tolerance)	
3 Leakage current	
4 tanδ	
5 Terminal strength	
6 Temperature characteristic	
7 Load life test	
.8 Shelf life test	
.9 Surge test	
.10 Vibration	
.11 Solderability test	
.12 Resistance to solder heat	
.13 Change of temperature	
.14 Damp heat test	
15 Vent test	
16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controll	ed
Substances')"	11
Attachment: Application Guidelines	12~15

Version	01	Page	3
		-	

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

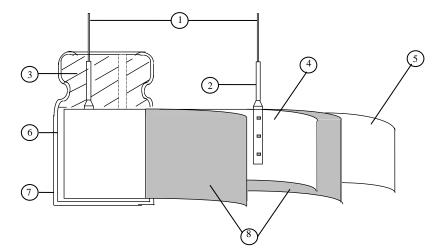
1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 7 101112 123 4 5 6 8 9 1314 1516 17 тс P EGS 1 0 5 1 H D 1 1 S м SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE TOL VOLTAGE CASE SIZE TYPE Cap(MFD) Code Tolerance (%) Code Voltage (W.V.) Code Case Size Feature Code SAMXON Product Lin (a) Code B 1 C D F ESM 0D For internal use only 3.5 Radial bulk RR EKF ESS EKS EGS 104 0.1 ±5 J 2.5 0E (The product lines 4 0G we have H,A,B,C,D, Ammo Taping 0.22 224 к 6.3 OJ E,M or 0,1,2,3,4,5,9). ±10 6. EKM EKG EOM 0K 8 F 0.33 334 2.0mm Pitch ΤТ 10 1A EZM EZS EGF ESF EGT ±15 L 12 12.5 1B τυ 2.5mm Pitch 0.47 474 13.5 14 14.5 16 1C М 20 1D ±20 тν 1 105 3.5mm Pitch Sleeve Material Cod 25 1E EGK EGE EGD EGC 16.5 30 11 5.0mm Pitch тс PET Р 2.2 225 Ν 18 L 18 L 18.5 8 20 M 22 N 235 Q 34 W 35 Q 40 R 42 4 45 6 51 S 63.5 T 76 U 90 X 100 Z su(um) Coofficient Co +3032 13 35 1V Lead Cut & Form 3.3 335 ERS -40 w ERF ERL ERR ERT 40 1G СВ 42 1**M** CB-Type 4.7 475 -20 0 А 50 1H CE ERE CE-Type 57 1L 10 106 ERI -20 +10 63 1J С HE-Type HE EBD ERA ERB ERC 226 1S 22 71 75 1**T** -20 +40 × KD-Type КD 336 33 80 1K 85 1R ENP ENH ERV -20 +50 s FD-Type FD 47 476 90 19 4.5 45 5 05 5.4 54 7 07 7.7 77 100 2A EH ERY ELP EAP EQP EDP -10 EH-Type в 100 107 120 20 125 2B PCB Termial 220 227 -10 +20 v 150 2Z 10.2 11 11.5 T2 11 1A 12 1B 13 1C 20 25 2J 30 3A 35 3E 160 2C sw ETF -10 +30 330 337 EHP Q 180 2P 200 2D 12 12.5 13 13.5 20 25 Snap-in sx EUP EKP EEP EFP ESP 470 477 -10 +50 215 22 т 220 2N sz 2200 228 -5 +10 230 23 Е 250 2E Lug SG 29.5 22000 229 30 31.5 35 35.5 275 2T -5 +15 F 05 300 21 33000 339 -5 +20 310 2R 35. G 06 315 2F 50 80 100 105 110 120 130 50 80 1L 1K 1M 1P 47000 479 0 +20 330 2U R Т5 350 2V 100000 10T Screw 0 +30 360 2X 0 т6 375 2Q VNS VKS VKM VRL VNH 15T 150000 10 1R 1E 1S 1F 40056650 385 2Y 0 +50 I. D5 400 2G 220000 22T +5 +15 420 2M z D6 450 2W 330000 33T +5 500 2H D 550 25 1000000 10M +10 +50 Y 600 26 630 2J 1500000 15M +10+30 н 2200000 22M 3300000 33M 5

Version

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Page	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

Tabl	ITEM				PERF	ORMAN	CE			
	Rated voltage						-			
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)									
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring Ve Measuring T <criteria> Shall be with</criteria></condition>	oltage emperat	: N sure : 20)±2℃	than 0.5V				
4.3	Leakage current	<condition> Connecting th and then, mea <criteria> Refer to Table</criteria></condition>	isure Le		-	ive resiste	or (1kΩ	±10Ω)	in series	for 2 minu
4.4	tanδ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	-	itance, fo	or measur	ring frequ	ency, vo	ltage and	l tempera	ature.
4.5	Terminal strength	Over 0	ength of capacito ength of pacitor, seconds, er of lea mm and 5mm to a>	r, applied f Termina applied f <u>and then</u> d wire less 0.8mm	l force to lls. borce to bo bent it fo Tens	ent the tent or 90° to ile force in (kgf) 5 (0.51) 0 (1.0)	rminal (1 its origin N	~4 mm fr al positio Bending (kg 2.5 (0 5 (0	rom the r on within force N gf) 0.25) .51)	ubber) for

		<condition< th=""><th></th><th></th><th>(10)</th><th>1</th><th></th><th>—:</th><th></th><th></th></condition<>			(10)	1		— :		
				Testing Temperature($^{\circ}$ C)			Time Time to reach thermal equilibrium			
			1	20 ± 2					-	
			2	-40(-25) ±3			to reach t		-	
			3	20±2			to reach t		•	
			4	105 ± 2			to reach t		•	
			5	20 ± 2	2	Time	to reach t	hermal e	quilibri	um
		<criteria< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></criteria<>								
			shall be with			.4The le	akage cu	rrent me	asured s	hall not
	Temperature		n 8 times of $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{$	-		t of Itor	n 1 1Tha	laalraaa		shall mot
	characteristi	-	p 5, tanδ sh n the specific		iin the lim	t of Iter	n 4.41ne	Теакаде	current	snall not
4.6	cs		°C (-25°C), i		(7) ratio sh	all not e	wceed th	e velue o	f the fol	lowing
		table.	C (-25 C), I	mpedance	(2) 1410 51				in the rol	llowing
			Voltage (V)	6.3	10	16	25	35	50	63
			C/Z+20°C	4	3	2	2	2	2	2
		_	C/Z+20°℃	8	6	4	3	3	3	3
		2 10 0		Ű	Ű	•	5	5	5	5
		For capac	citance value	$> 1000 \mu$]	F, Add 0.5	per anot	ther 1000	µ F for 2	Z-25/Z+	20℃,
					Add 1.0	per anot	her 1000	µ F for Z	Z-40°C/Z	Z+20℃.
		Capacitanc	ce, tan δ , an	d impedan	ce shall be	measure	ed at 120	Hz.		
		<condition< td=""><td></td><td>84 4No 4 1</td><td>13 methods</td><td>The co</td><td>pagitori</td><td>stored s</td><td>at a temr</td><td>perature of</td></condition<>		84 4No 4 1	13 methods	The co	pagitori	stored s	at a temr	perature of
		According	g to IEC603				-		-	
		According $105 \ { m C} \pm 2$	g to IEC603 2 with DC b	ias voltage	plus the ra	ted ripp	le curren	t for Tab	ole 1. (T	he sum of
		According $105 \ \ \mathbb{C} \pm \mathbb{C}$ DC and 1	g to IEC6033 2 with DC b ripple peak	ias voltage voltage sh	plus the ra	ted ripp	le curren e rated w	t for Tab orking	ole 1. (T voltage)	he sum of Then the
	Lord	According $105 \ \ C \pm 2$ DC and r product sh	g to IEC603 2 with DC b ripple peak hould be test	ias voltage voltage sh ed after 16	e plus the ra nall not ex 5 hours reco	ted ripp	le curren e rated w	t for Tab orking	ole 1. (T voltage)	he sum of Then the
47	Load	According $105 \ \ C \pm 2$ DC and r product sh	g to IEC6033 2 with DC b ripple peak hould be test puld meet the	ias voltage voltage sh ed after 16	e plus the ra nall not ex 5 hours reco	ted ripp	le curren e rated w	t for Tab orking	ole 1. (T voltage)	he sum of Then the
4.7	life	According 105 °C ±2 DC and r product sh result sho < Criteria	g to IEC6033 2 with DC b ripple peak hould be test puld meet the	ias voltage voltage sh ed after 16 following	e plus the ra nall not ex 5 hours reco 5 table:	ted ripp ceed the overing	le curren e rated w time at at	t for Tab orking	ole 1. (T voltage)	he sum of Then the
4.7		According $105 \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara</criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a >	ias voltage voltage sh ed after 16 following <u>ll meet the</u>	e plus the ra nall not ex 5 hours reco 5 table:	ted ripp ceed the overing r	le curren e rated w time at at ments.	t for Tab orking mospher	ole 1. (T voltage)	he sum of Then the
4.7	life	According $105 \ \ \pm 2$ DC and r product sh result sho <criteria< b=""> The chara</criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a > acteristic sha eakage currer	ias voltage voltage sh ed after 16 following ill meet the nt	e plus the ra nall not ex 6 hours reco 5 table: e following Value in 4	ted ripp ceed the overing requires .3 shall	le curren e rated w time at at ments. be satisfi	t for Tab orking v mospher ed	ole 1. (T voltage)	he sum of Then the
4.7	life	According $105 \ \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea Ca</criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a > acteristic sha akage currer pacitance Cl	ias voltage voltage sh ed after 16 following ill meet the nt	e plus the ra nall not ex 5 hours reco 5 table: e following Value in 4 Within \pm	ted ripp ceed the overing requires .3 shall 25% of	le curren e rated w time at at ments. be satisfi initial va	t for Tab orking v mospher ed lue.	ole 1. (T voltage) ic condi	The sum of Then the tions. The
4.7	life	According $105 \ \ \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea tan</criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a > acteristic sha eakage currer pacitance Cl no	ias voltage voltage sh ed after 16 following ill meet the nt	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more	requires .3 shall 25% of than 200	le curren e rated w time at at ments. be satisfi initial va 0% of the	t for Tab orking v mospher ed lue. specifie	ble 1. (T voltage) ic condi	The sum of Then the tions. The
4.7	life	According $105 \ \ \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea tan</criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a > acteristic sha akage currer pacitance Cl	ias voltage voltage sh ed after 16 following ill meet the nt	e plus the ra nall not ex 5 hours reco 5 table: e following Value in 4 Within \pm	requires .3 shall 25% of than 200	le curren e rated w time at at ments. be satisfi initial va 0% of the	t for Tab orking v mospher ed lue. specifie	ble 1. (T voltage) ic condi	The sum of Then the tions. The
4.7	life	According $105 \ \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea tan Ap</criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a> acteristic sha akage currer pacitance Cl no opearance	ias voltage voltage sh ed after 16 following ill meet the nt	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more	requires .3 shall 25% of than 200	le curren e rated w time at at ments. be satisfi initial va 0% of the	t for Tab orking v mospher ed lue. specifie	ble 1. (T voltage) ic condi	The sum of Then the tions. The
4.7	life	According $105 \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Ca tan Ap</criteria<>	g to IEC6033 2 with DC b ripple peak hould be test build meet the a> acteristic sha eakage currer pacitance Cl no opearance	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more There shal	require .3 shall 25% of han 200	le curren e rated w time at at ments. be satisfi initial va 0% of the eakage o	t for Tab orking mospher ed lue. specifie f electro	ble 1. (T voltage) ic condi d value. lyte.	The sum of Then the tions. The
4.7	life	According $105 \ C \pm 2$ DC and r product sho < Criteria The chara Ca tan Ap < Conditi The capacit	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a> acteristic sha akage currer pacitance Cl no opearance	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the rational not ex b hours record table: e following Value in 4 Within \pm Not more There shale th no voltage	requires a shall 25% of than 200 be no b ge applie	le curren e rated w time at at ments. be satisfi initial va 0% of the leakage o	t for Tab vorking v mospher ed lue. specifie f electro mperatur	ble 1. (T voltage) ic condi d value. lyte. re of 105	The sum of Then the tions. The
4.7	life	According $105 \ \C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea tan Ap <conditi< b=""> The capacit 1000+48/4</conditi<></criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Cl no opearance ion> itors are ther 0 hours. Fol	ias voltage voltage sh ed after 16 following Il meet the nange	e plus the ra aall not ex b hours reco table: e following Value in 4 Within \pm Not more There shal	requires a shall 25% of than 200 l be no b ge applic e capaci	le curren e rated w time at at <u>ments.</u> <u>be satisfi</u> <u>initial va</u> <u>0% of the</u> <u>eakage o</u> ed at a te tors shal	t for Tab vorking v mospher ed lue. specifie f electro mperatur l be remo	ble 1. (T voltage) ic condi d value. lyte. re of 105 oved fro	The sum of Then the tions. The $5\pm 2^{\circ}C$ for om the test
4.7	life test	According $105 \ \C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea tan Ap <conditi< b=""> The capacit 1000+48/c chamber a</conditi<></criteria<>	g to IEC6033 2 with DC b ripple peak hould be test ould meet the a> acteristic sha akage currer pacitance Cl $b\overline{\delta}$ opearance ion> itors are ther 0 hours. Fol and be allow	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the ra nall not ex o hours reco table: e following Value in 4 Within ± Not more There shal th no volta s period th pilized at r	requires a shall 25% of han 200 l be no l ge applic com ten	e curren e rated w time at at <u>ments.</u> <u>be satisfi</u> <u>initial va</u> <u>0% of the</u> <u>eakage o</u> <u>ed at a te</u> tors shal pperature	t for Tab vorking v mospher ed lue. specifie f electro mperatur l be remo for 4~8	ble 1. (T voltage) ic condi d value. lyte. re of 105 oved fro hours.	The sum of Then the tions. The $5\pm 2^{\circ}C$ for om the test Next they
	life test Shelf	According $105 \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea Ca tan Ap <conditi< b=""> The capacit 1000+48/c chamber a shall be c</conditi<></criteria<>	g to IEC6033 2 with DC b ripple peak hould be test build meet the acteristic sha acteristic sha actage currer pacitance Cl $n\delta$ opearance ion> tors are ther 0 hours. Fol and be allow connected to	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more There shal th no voltag s period th pilized at r limiting re	require: .3 shall 25% of than 200 l be no l ge applid e capaci bom ten sistor(11	le curren le curren e rated w time at at <u>ments.</u> be satisfi initial va 0% of the eakage o ed at a te tors shal pperature $x \pm 100\Omega$	t for Tab vorking v mospher ed lue. specifie f electro f electro l be rema for 4~8) with I	ble 1. (T voltage) ic condi d value. lyte. re of 105 oved fro hours. D.C. rate	The sum of Then the tions. The $5\pm 2^{\circ}C$ for on the test Next they ed voltage
4.7	life test Shelf life	According $105 \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Lea Ca tan Ap <conditi< b=""> The capacit 1000+48/c chamber a shall be c</conditi<></criteria<>	g to IEC6033 2 with DC b ripple peak hould be test build meet the asteristic sha eakage currer pacitance Cl $n\delta$ opearance ion> tors are ther 0 hours. Fol and be allow connected to or 30min. Af	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more There shal th no voltag s period th pilized at r limiting re	require: .3 shall 25% of than 200 l be no l ge applid e capaci bom ten sistor(11	le curren le curren e rated w time at at <u>ments.</u> be satisfi initial va 0% of the eakage o ed at a te tors shal pperature $x \pm 100\Omega$	t for Tab vorking v mospher ed lue. specifie f electro f electro l be rema for 4~8) with I	ble 1. (T voltage) ic condi d value. lyte. re of 105 oved fro hours. D.C. rate	The sum of Then the tions. The $5\pm 2^{\circ}C$ for on the test Next they ed voltage
	life test Shelf	According $105 \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Ca tan App <conditi< b=""> The capacit 1000+48/c chamber a shall be c applied for</conditi<></criteria<>	g to IEC6033 2 with DC b ripple peak hould be test build meet the asteristic sha eakage currer pacitance Cl $n\delta$ opearance ion> tors are ther 0 hours. Fol and be allow connected to or 30min. Af	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more There shal th no voltag s period th pilized at r limiting re	require: .3 shall 25% of than 200 l be no l ge applid e capaci bom ten sistor(11	le curren le curren e rated w time at at <u>ments.</u> be satisfi initial va 0% of the eakage o ed at a te tors shal pperature $x \pm 100\Omega$	t for Tab vorking v mospher ed lue. specifie f electro f electro l be rema for 4~8) with I	ble 1. (T voltage) ic condi d value. lyte. re of 105 oved fro hours. D.C. rate	The sum of Then the tions. The $5\pm 2^{\circ}C$ for on the test Next they ed voltage
	life test Shelf life	According $105 \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Ca tan App <conditi< b=""> The capacit 1000+48/c chamber a shall be c applied for</conditi<></criteria<>	g to IEC6033 2 with DC b ripple peak hould be test build meet the a> acteristic sha akage currer pacitance Cl $n\delta$ opearance ion> tors are ther 0 hours. Fol and be allow connected to or 30min. Af	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more There shal th no voltag s period th pilized at r limiting re	require: .3 shall 25% of than 200 l be no l ge applid e capaci bom ten sistor(11	le curren le curren e rated w time at at <u>ments.</u> be satisfi initial va 0% of the eakage o ed at a te tors shal pperature $x \pm 100\Omega$	t for Tab vorking v mospher ed lue. specifie f electro f electro l be rema for 4~8) with I	ble 1. (T voltage) ic condi d value. lyte. re of 105 oved fro hours. D.C. rate	The sum of Then the tions. The $5\pm 2^{\circ}C$ for on the test Next they ed voltage
	life test Shelf life	According $105 \ C \pm 2$ DC and r product sh result sho <criteria< b=""> The chara Ca tan App <conditi< b=""> The capacit 1000+48/c chamber a shall be c applied for</conditi<></criteria<>	g to IEC6033 2 with DC b ripple peak hould be test build meet the a> acteristic sha akage currer pacitance Cl $n\delta$ opearance ion> tors are ther 0 hours. Fol and be allow connected to or 30min. Af	ias voltage voltage sh ed after 16 following Ill meet the nange	e plus the ra hall not ex b hours reco table: e following Value in 4 Within \pm Not more There shal th no voltag s period th pilized at r limiting re	require: .3 shall 25% of than 200 l be no l ge applid e capaci bom ten sistor(11	le curren le curren e rated w time at at <u>ments.</u> be satisfi initial va 0% of the eakage o ed at a te tors shal pperature $x \pm 100\Omega$	t for Tab vorking v mospher ed lue. specifie f electro f electro l be rema for 4~8) with I	ble 1. (T voltage) ic condi d value. lyte. re of 105 oved fro hours. D.C. rate	The sum of Then the tions. The $5\pm 2^{\circ}C$ for on the test Next they ed voltage

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet	Z A
		Leakage current	Value in 4.3 shall be satisfied
1.0	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value.
4.8	life	tanδ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		Remark: If the capacitors are	stored more than 1 year, the leakage current may increase.
		Please apply voltage through	about 1 k Ω resistor, if necessary.
		<condition></condition>	
		C_{R} :Nominal Capacitance (
4.9 Surge test		<criteria></criteria>	* I)
	Leakage current	Not more than the specified value.	
	Capacitance Change	Within $\pm 15\%$ of initial value.	
	tanδ	Not more than the specified value.	
			There shall be no leakage of electrolyte.
		Appearance Attention:	There shall be no leakage of electrolyte.
		This test simulates over volta over voltage as often applied <condition></condition>	age at abnormal situation only. It is not applicable to such
4.10	Vibration test	directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method:	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed in Within 30°

Version	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		< Condition> The capacitor shall be tested un	der the following	conditions: Sn-Cu sol	der		
		Soldering temperature	: 250±3°C	conditions. Sh Cu son	dei		
		Dipping depth	: 200 <u>–</u> 0 C				
4 1 1	Solderability	Dipping speed	: 25±2.5mm	/s			
4.11	test	Dipping time	: 3±0.5s				
		<criteria></criteria>					
		Coating quality	A minimum immersed	n of 95% of the surface	e being		
		<condition></condition>					
		Terminals of the capacitor shal	l be immersed in	to solder bath at 260	$\pm 5^{\circ} C$ for $10 \pm$		
		1 seconds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0} s	econds to 1.5~2.0	mm from the body of	capacitor .		
		Then the capacitor shall be left u	under the normal t	emperature and norma	al humidity for		
	Resistance to	1~2 hours before measurement.		-			
4.12	solder heat	<criteria></criteria>	-				
	test	Leakage current	Not more than the	ne specified value.			
		Capacitance Change	Within $\pm 10\%$ c	of initial value.			
		tanδ	Not more than the	ne specified value.			
		Appearance	There shall be n	o leakage of electroly	te.		
		<condition></condition>					
		Temperature Cycle:According t			shall be		
		placed in an oven, the condition					
		Tempera	ature	Time			
		(1)+20°C		≤3 Minutes			
	Change of	(2)Rated low temperature (-40℃) (-25℃)	30 ± 2 Minutes			
4.13	temperature	(3)Rated high temperature	30 ± 2 Minutes				
	test	(1) to (3)=1 cycle, total 5 c	ycle				
		<criteria></criteria>					
		The characteristic shall meet the			- I		
			ot more than the s		_		
			ot more than the s	•	_		
		**	here shall be no le	akage of electrolyte.			
		<condition></condition>					
		Humidity Test:	10		f 500 - L 9		
		According to IEC60384-4No.4.	-	-			
		hours in an atmosphere of 90~9 meet the following requirement		C, the characteristic c	snange snall		
		<pre></pre> <pre></pre> <pre></pre>					
			more than the spec	rified value	1		
4.14	Damp heat	· · · · · · · · · · · · · · · · · · ·	$\pm 20\%$ of initi				
	test			f the specified value.	-		
			e shall be no leak		-		
		rippediance The					

01

Page

9

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.15	Vent test	<condition> The following test only apply to those products with vent products at diameter ≥ with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. The current selected from below table is applied. <table 3=""> Diameter (mm) DC Current (A) 22.4 or less 1 Over 22.4 10</table></condition>	'hen a
4.16	Maximum permissible (ripple current)	<condition> The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not excee rated voltage and shall not reverse voltage.Frequency Multipliers:$\boxed{Coefficient}$$50$$120$$300$$1k$$100k$$\boxed{Cap. (\mu F)}$$50$$120$$300$$1k$$100k$$39 \sim 330$$0.60$$0.70$$0.85$$0.95$$1.00$$390 \sim 1000$$0.65$$0.75$$0.90$$1.00$$1200 \sim 3900$$0.75$$0.80$$0.95$$1.00$</condition>	ed the

Version 01	Page	10
------------	------	----

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
	Polybrominated biphenyls (PBB)				
Brominated	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	oounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo com	pounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Version 01 Page 11	
--------------------	--

SAMXON

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
 - Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12

SAMXON

(6) Wiring Near the Pressure Relief Vent

- Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
- (7) Circuit Board patterns Under the Capacitor
- Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
- (8) Screw Terminal Capacitor Mounting
 - Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

- 1.6 Electrical Isolation of the Capacitor
 - Completely isolate the capacitor as follows.
- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
- 1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

(1) Provide protection circuits and protection devices to allow safe failure modes.

(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $lk\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
- 2.2 Capacitor Insertion
- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

- 2.3 Manual Soldering
- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations
 - Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result. Acetone
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version 01 Page 14

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01	\mathcal{O}	15
		U	1