Field Stop Trench IGBT with **Soft Fast Recovery Diode**

100 A, 650 V

AFGY100T65SPD

AFGY100T65SPD which is AEC Q101 qualified offers very low conduction and switch losses for a high efficiency operation in various applications, rugged transient reliability and low EMI.

Meanwhile, this part also offers an advantage of outstanding parallel operation performance with balance current sharing.

Features

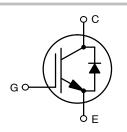
- AEC-Q101 Qualified
- Very Low Saturation Voltage: $V_{CE(Sat)} = 1.6 V (Typ.) @ I_C = 100 A$
- Maximum Junction Temperature: $T_I = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- Tight Parameter Distribution
- High Input Impedance
- 100% of the Parts are Tested for ILM
- Short Circuit Ruggedness
- Co-packed with Soft Fast Recovery Diode

Typical Applications

- Traction Inverter for HEV/EV
- Auxiliary DC/AC Converters
- Motor Drives
- Other Power-Train Applications Requiring High Power Switch

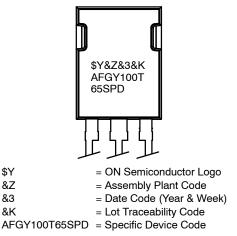
MAXIMUM RATINGS

Symbol	Value	Unit
V _{CES}	650	V
V _{GES}	±20 ±30	V
Ι _C	120 100	A
I _{LM}	300	А
I _{CM}	300	А
١ _F	120 100	A
PD	660 330	W
SCWT	6	μs
dV/dt	10	V/ns
T _J , T _{STG}	–55 to +175	°C
ΤL	265	°C
	V _{GES} I _C I _{LM} I _{CM} I _F P _D SCWT dV/dt T _J , T _{STG}	V _{CES} 650 V _{GES} ±20 1 _C 120 1 _C 300 I _{LM} 300 I _C 120 1 _C 300 I _{CM} 300 I _F 120 100 300 SCWT 6 dV/dt 10 T _J , T _{STG} -55 to +175


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Value limit by bond wire

2. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 300 A, Inductive Load


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

\$Y

&Z

&З

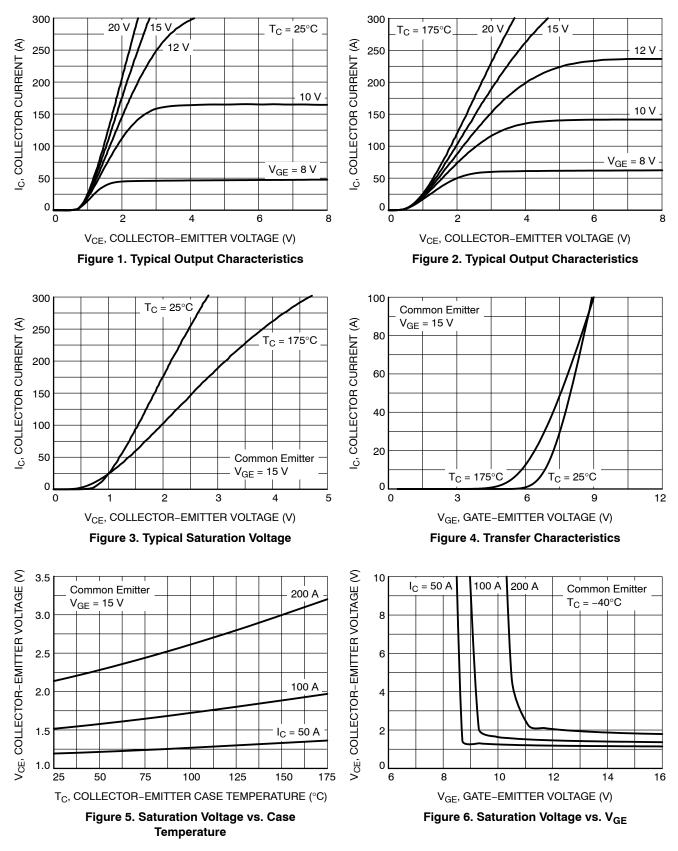
8K

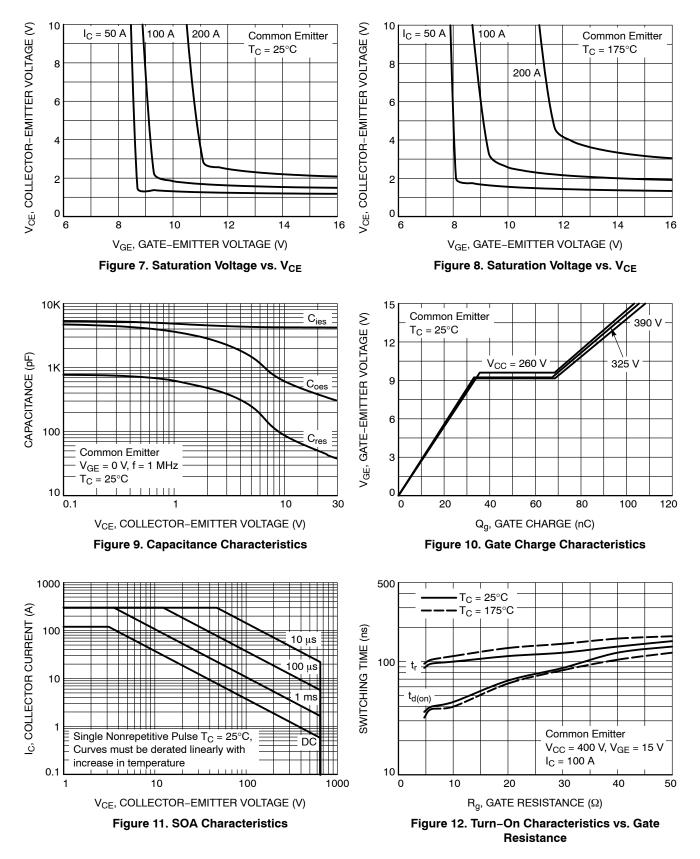
Device	Package	Shipping
AFGY100T65SPD	TO-247-3LD	30 Units / Tube

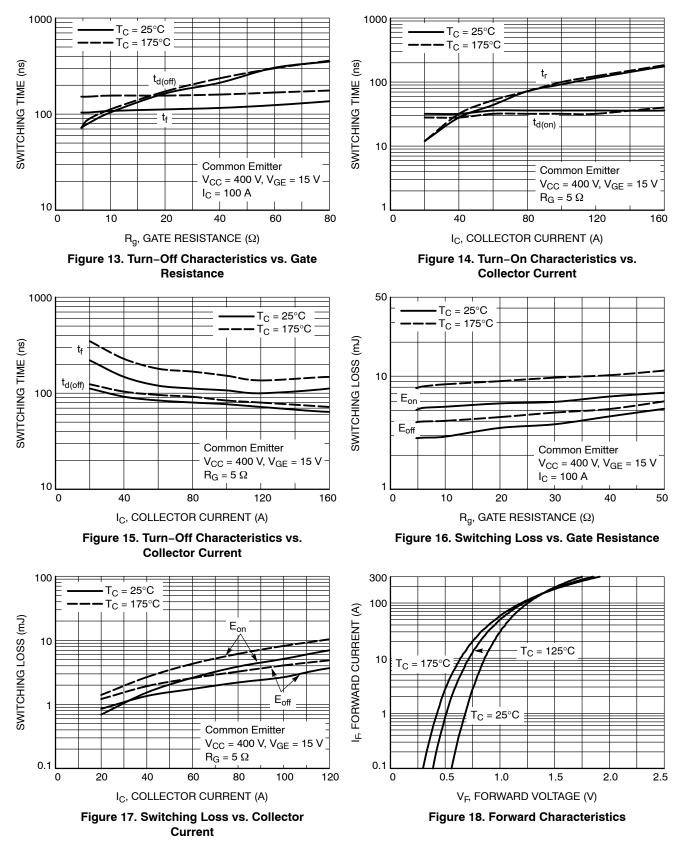
1

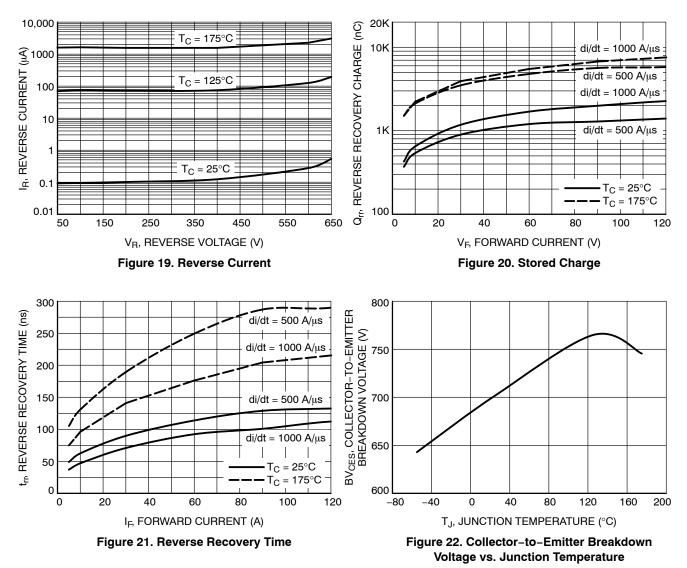
THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ hetaJC}$	0.23	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ hetaJC}$	0.40	
Thermal resistance junction-to-ambient	$R_{\theta JA}$	40	

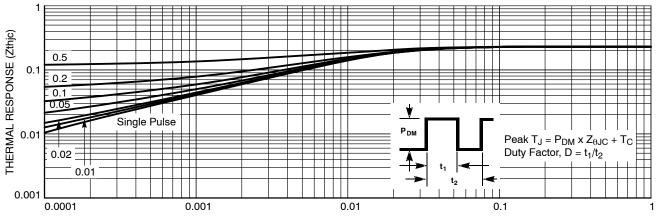

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	-
Collector-emitter breakdown voltage, gate-emitter short-circuited	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650	_	_	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\Delta BV_{CES} \Delta T_{J}$	-	0.6	_	V/°C
Collector-emitter cut-off current, gate-emitter short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	40	μΑ
Gate leakage current, collector- emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±250	nA
ON CHARACTERISTICS						
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 100 \text{ mA}$	V _{GE(th)}	4.3	5.3	6.3	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 100 A V_{GE} = 15 V, I _C = 100 A, T _J = 175°C	V _{CE(sat)}		1.6 2.15	2.05 -	V
DYNAMIC CHARACTERISTICS						
Input capacitance	V _{CE} = 30 V,	Cies	-	4220	-	pF
Output capacitance	V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	302	-	
Reverse transfer capacitance		C _{res}	-	38	-	
Internal Gate Resistance	f = 1 MHz	R _G	-	3	-	Ω
Gate charge total	$V_{CE} = 400 V,$	Qg	-	109	164	nC
Gate-to-emitter charge	I _C = 100 A, V _{GE} = 15 V	Q _{ge}	-	34	-	
Gate-to-collector charge		Q _{gc}	-	36	-	
SWITCHING CHARACTERISTICS, INI	DUCTIVE LOAD					
Turn-on delay time	$T_{J} = 25^{\circ}C,$	t _{d(on)}	-	36	-	ns
Rise time	V _{CC} = 400 V, I _C = 100 A,	t _r	-	92	-	
Turn-off delay time	R _G = 5.0 Ω, V _{GE} = 15 V,	t _{d(off)}	-	78	-	
Fall time	Inductive Load	t _f	-	106	-	
Turn-on switching loss		Eon	-	5.1	-	mJ
Turn-off switching loss		E _{off}	-	2.7	-	
Total switching loss		E _{ts}	-	7.8	-	
Turn-on delay time	$T_{\rm J} = 175^{\circ}C,$	t _{d(on)}	-	32	-	ns
Rise time	$V_{CC} = 400 V,$ $I_{C} = 100 A,$	t _r	-	96	_	
Turn-off delay time	R _G = 5.0 Ω, V _{GE} = 15 V,	t _{d(off)}	-	84	_	
Fall time	Inductive Load	t _f	-	156	-	
Turn-on switching loss]	E _{on}	-	7.9	-	mJ
Turn-off switching loss		E _{off}	-	4.0	_]
Total switching loss]	E _{ts}	-	11.9	-]


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted) (Continued)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC						
Diode Forward Voltage	I _F = 100 A, T _J = 25°C	V _{FM}	-	1.3	1.6	V
	I _F = 100 A, T _J = 175°C		-	1.25	-	
Reverse Recovery Energy	$ I_F = 100 \text{ A, } dI_F/dt = 1000 \text{ A}/\mu \text{s}, \\ V_{CE} = 400 \text{ V, } T_J = 25^\circ \text{C} $	E _{rec}	-	383	-	Lμ
	$\label{eq:IF} \begin{array}{l} {\sf I}_{\sf F} = 100 \; {\sf A}, \; {\sf dI}_{\sf F}/{\sf dt} = 1000 \; {\sf A}/\mu {\sf s}, \\ {\sf V}_{\sf CE} = 400 \; {\sf V}, \; {\sf T}_{\sf J} = 175^\circ {\sf C} \end{array}$		-	1668	-]
Diode Reverse Recovery Time	$I_{F} = 100 \text{ A}, \text{ d}I_{F}/\text{d}t = 1000 \text{ A}/\mu\text{s}, \\ V_{CE} = 400 \text{ V}, T_{J} = 25^{\circ}\text{C}$	T _{rr}	_	105	-	ns
	$\label{eq:IF} \begin{array}{l} {\sf I}_{\sf F} = 100 \; {\sf A}, \; {\sf dI}_{\sf F}/{\sf dt} = 1000 \; {\sf A}/\mu {\sf s}, \\ {\sf V}_{\sf CE} = 400 \; {\sf V}, \; {\sf T}_{\sf J} = 175^\circ {\sf C} \end{array}$		-	208	-]
Diode Reverse Recovery Charge	$I_{F} = 100 \text{ A}, \text{ d}I_{F}/\text{d}t = 1000 \text{ A}/\mu\text{s}, \\ V_{CE} = 400 \text{ V}, T_{J} = 25^{\circ}\text{C}$	Q _{rr}	_	2090	-	nC
	$\label{eq:IF} \begin{array}{l} {\sf I}_{\sf F} = 100 \; {\sf A}, \; {\sf dI}_{\sf F}/{\sf dt} = 1000 \; {\sf A}/\mu {\sf s}, \\ {\sf V}_{\sf CE} = 400 \; {\sf V}, \; {\sf T}_{\sf J} = 175^\circ {\sf C} \end{array}$]	_	6974	-	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.



TYPICAL CHARACTERISTICS

RECTANGULAR PULSE DURATION (sec)

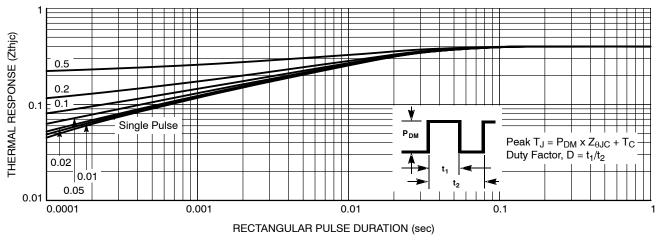


Figure 24. Transient Thermal Impedance of Diode

D2

DIM

А

Α1

A2

b

b2

b4

С

D

D1 D2

е

Е

E1 E2

L

L1

Q

TO-247-3LD CASE 340CU ISSUE A

DATE 16 SEP 2019

MILLIMETERS

NOM

4.70

2.40

2.00

1.20

2.40

3.20

0.60

20.60

15.67

0.55

5.45 BSC

15.60

13.60

4.30

20.00

3.85

5.55

MAX

4.90

2.70 2.30

1.400

2.60

3.40

0.80

20.80

15.87

0.85

15.80

13.80

4.52

20.30

4.05

5.75

MIN

4.50

2.10

1.70

1.00

2.20

3.00

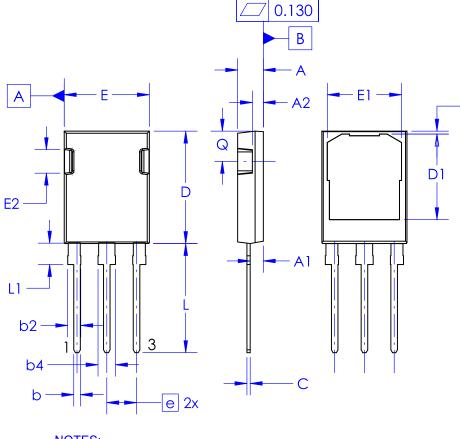
0.40

20.40

15.47

0.25

15.40


13.40

4.12

19.70

3.65

5.35

NOTES:

- A. NO INDUSTRY STANDARS APPLIES TO
- THIS PACKAGE.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.C. DIMENSIONS ARE EXCLUSIVE OF BURRS,
- MOLD FLASH AND TIE BAR PROTRUSIONS.
- D. DRAWING CONFORMS TO ASME Y14.5-2009.

DOCUMENT NUMBER:	98AON13773G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1			
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative