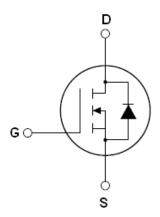


N-Channel Super Junction Power MOSFET III

General Description

The series of devices use advanced trench gate super junction technology and design to provide excellent R_{DS(ON)} with low gate charge. This super junction MOSFET fits the industry's AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.


Features

- New technology for high voltage device
- Low on-resistance and low conduction losses
- ●Small package
- ●Ultra Low Gate Charge cause lower driving requirements
- ●100% Avalanche Tested
- ●ROHS compliant

Application

- Power factor correction (PFC)
- Switched mode power supplies(SMPS)
- Uninterruptible Power Supply (UPS)

V _{DS}	700	V
R _{DS(ON)TYP.}	1100	mΩ
I_D	4	A

Schematic diagram

Package Marking And Ordering Information

Device	Device Package	Marking
NCE70T1K2R	SOT-223-2L	NCE70T1K2R

SOT-223-2L

Table 1. Absolute Maximum Ratings (T_c=25℃)

Parameter	Symbol	Value	Unit
Drain-Source Voltage (V _{GS} =0V)	V _{DS}	700	V
Gate-Source Voltage (VDS=0V) ,AC (f>1 Hz)	V _G s	±30	V
Continuous Drain Current at Tc=25°C	I _{D (DC)}	4	А
Continuous Drain Current at Tc=100°C	I _{D (DC)}	2.5	А
Pulsed drain current (Note 1)	I _{DM (pluse)}	16	А
Maximum Power Dissipation(Tc=25℃)	P _D	5.2	W
Single pulse avalanche energy (Note2)	Eas	27	mJ
Avalanche current ^(Note 1)	I _{AR}	0.7	А
Repetitive Avalanche energy , t_{AR} limited by T_{jmax} (Note 1)	E _{AR}	0.1	mJ

Parameter	Symbol	Value	Unit
Drain Source voltage slope, V _{DS} ≤480 V,	dv/dt	50	V/ns
Reverse diode dv/dt, $V_{DS} \leq 480 \text{ V}, I_{SD} < I_{D}$	dv/dt	15	V/ns
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55+150	°C

Table 2. Thermal Characteristic

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Maximum)	R _{thJC}	24	°C /W
Thermal Resistance, Junction-to-Ambient (Maximum)	R _{thJA}	62	°C /W

Table 3. Electrical Characteristics (TA=25°Cunless otherwise noted)

Parameter Symbol Condition Min Typ Max Unit	Table 5. Liectifical Characteristics	cs (TA-23 Culless otherwise noted)					
Drain-Source Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =250µA 700 V Zero Gate Voltage Drain Current(Tc=25°C) I _{DSS} V _{DS} =700V,V _{GS} =0V 1 µA Zero Gate Voltage Drain Current(Tc=125°C) I _{DSS} V _{DS} =700V,V _{GS} =0V 50 µA Gate-Body Leakage Current I _{GSS} V _{GS} =220V,V _{DS} =0V ±100 nA Gate Threshold Voltage V _{GS} (th) V _{DS} =V _{GS} ,I _D =250µA 3 4 V V Drain-Source On-State Resistance R _{DS} (DN) V _{GS} =10V, I _D =2A 1100 1300 mΩ Dynamic Characteristics	Parameter	Symbol Condition		Min	Тур	Max	Unit
Zero Gate Voltage Drain Current(Tc=25°C) I _{DSS} V _{DS} =700V,V _{GS} =0V 1	On/off states						
Zero Gate Voltage Drain Current(Tc=125°C) I _{DSS} V _{DS} =700V,V _{GS} =0V ±100 nA	Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	700			V
Gate-Body Leakage Current	Zero Gate Voltage Drain Current(Tc=25℃)	I _{DSS}	V _{DS} =700V,V _{GS} =0V			1	μA
Gate Threshold Voltage V _{GS} (h) V _{DS} =V _{GS} ,I _D =250µA 3 4 V Drain-Source On-State Resistance R _{DS} (ON) V _{GS} =10V, I _D =2A 1100 1300 mΩ Dynamic Characteristics Input Capacitance C _{Iss} Input Capacitance C _{Coss} Reverse Transfer Capacitance C _{Trss} Total Gate Charge Q _g Gate-Source Charge Q _{gd} Gate-Drain Charge Q _{gd} Gate-Drain Charge Q _{gd} Turn-on Delay Time t _d (on) Turn-Off Bellay Time t _f Turn-Off Fall Time t _f Source-Drain Diode Characteristics Source-drain current(Body Diode) I _{SDM} Foward On Voltage V _{SD} T _j =25°C,I _F =2A,di/dt=100A/µs Turn-Off Sequence Q _{Gr} Tj=25°C,I _F =2A,di/dt=100A/µs Turn-Off Sequence Q _{Gr} Tirn-Off Sequence Q _{Gr} Turn-Off Sequence Q _{Gr}	Zero Gate Voltage Drain Current(Tc=125℃)	I _{DSS}	V _{DS} =700V,V _{GS} =0V			50	μA
Drain-Source On-State Resistance R _{DS(ON)} V _{GS} =10V, I _D =2A 1100 1300 mΩ	Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V			±100	nA
Dynamic Characteristics Input Capacitance Cliss Output Capacitance Coss PF	Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	3		4	V
Disput Capacitance Ciss Vos=50V,Vos=0V, F=1.0MHz 17 PF	Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =2A		1100	1300	mΩ
Output Capacitance Coss Coss V _{DS} =50V,V _{GS} =0V, F=1.0MHz 17 PF Reverse Transfer Capacitance Crss Crss 0.5 PF Total Gate Charge Qg Gate-Source Charge Qgs Qgd V _{DS} =480V,I _D =4A, V _{GS} =10V 2.3 nC Gate-Drain Charge Qgd V _{DS} =10V 4 nC Switching times Turn-on Delay Time t _d (on) N _D =380V,I _D =2.5A, R _G =5Ω,V _{GS} =10V 4 nS Turn-on Rise Time t _f V _{DD} =380V,I _D =2.5A, R _G =5Ω,V _{GS} =10V 4 nS Turn-Off Delay Time t _f R _G =5Ω,V _{GS} =10V 52 70 nS Turn-Off Fall Time t _f T _C =25°C 4 A Source- Drain Diode Characteristics Source-drain current(Body Diode) I _{SD} T _C =25°C 4 A Pulsed Source-drain current(Body Diode) I _{SD} T _C =25°C, I _{SD} =4A,V _{GS} =0V 0.9 1.2 V Reverse Recovery Time t _f T _D =25°C,I _{SD} =4A,V _{GS} =0V 0.6 uC	Dynamic Characteristics						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{lss}	\/ 50\/\\ 0\/		304		PF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	Coss			17		PF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}	F=1.UIVID2		0.5		PF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q_g	\/ 400\/ 44		8.8	12	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q _{gs}			2.3		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q_{gd}	V _{GS} -10V		4		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Switching times			•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Delay Time	t _{d(on)}			8		nS
Turn-Off Fall Time t_f 9 18 nS Source- Drain Diode Characteristics	Turn-on Rise Time	t _r	V_{DD} =380V, I_{D} =2.5A,		4		nS
	Turn-Off Delay Time	t _{d(off)}	$R_G=5\Omega,V_{GS}=10V$		52	70	nS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Fall Time	t _f			9	18	nS
Pulsed Source-drain current(Body Diode) I_{SDM} $T_{C}=25^{\circ}C$ 16 A Forward On Voltage V_{SD} $T_{J}=25^{\circ}C,I_{SD}=4A,V_{GS}=0V$ 0.9 1.2 V Reverse Recovery Time t_{rr} 200 nS Reverse Recovery Charge Q_{rr} $T_{J}=25^{\circ}C,I_{F}=2A,di/dt=100A/\mu s$ 0.6 uC	Source- Drain Diode Characteristics						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source-drain current(Body Diode)	I _{SD}	T -25°C			4	Α
Reverse Recovery Time t_{rr} 200 nS Reverse Recovery Charge Q_{rr} $Tj=25^{\circ}C,I_{F}=2A,di/dt=100A/\mu s$ 0.6 uC	Pulsed Source-drain current(Body Diode)	I _{SDM}	1 _C =25 C			16	Α
Reverse Recovery Charge Q _{rr} Tj=25°C,I _F =2A,di/dt=100A/μs 0.6 uC	Forward On Voltage	V _{SD}	Tj=25°C,I _{SD} =4A,V _{GS} =0V		0.9	1.2	V
	Reverse Recovery Time	t _{rr}			200		nS
Peak reverse recovery current I _{rrm} 6 A	Reverse Recovery Charge	Q _{rr}	Tj=25°C,I _F =2A,di/dt=100A/µs		0.6		uC
	Peak reverse recovery current	I _{rrm}			6		Α

Notes: 1.Repetitive Rating: Pulse width limited by maximum junction temperature

^{2.} Tj=25°C,VDD=50V,VG=10V, R_G=25 Ω

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (curves)

Figure 1. Safe operating area

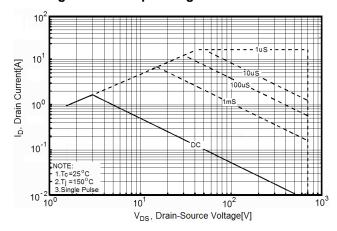


Figure 2. Source-Drain Diode Forward Voltage

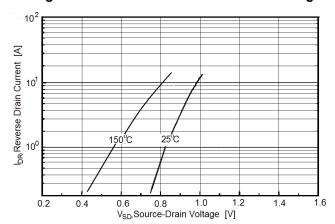


Figure 3. Output characteristics

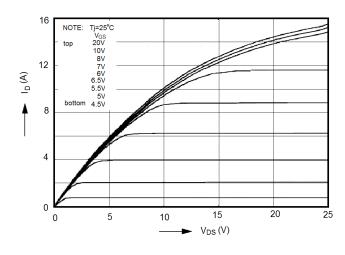


Figure 4. Transfer characteristics

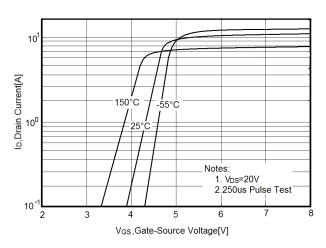


Figure 5. Static drain-source on resistance

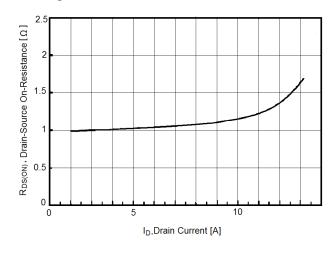


Figure 6. $R_{DS(ON)}$ vs Junction Temperature

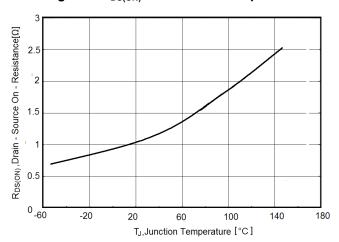


Figure 7. BV_{DSS} vs Junction Temperature

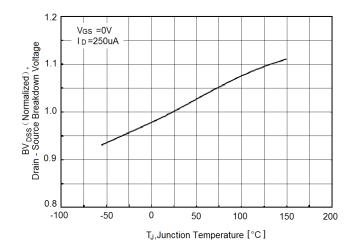


Figure 8. Maximum I_{D} vs Junction Temperature

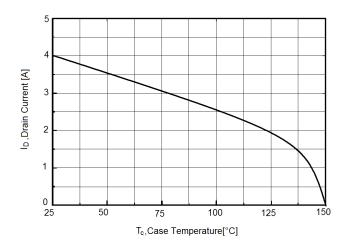


Figure 9. Gate charge waveforms

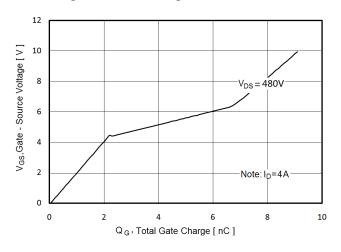


Figure 10. Capacitance

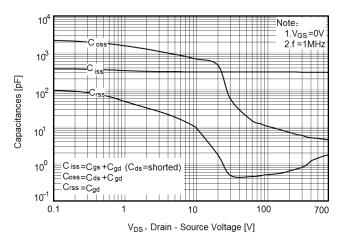
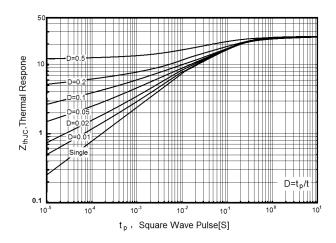
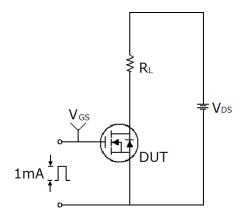
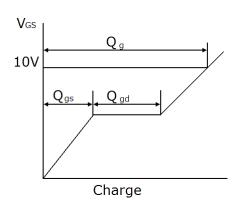
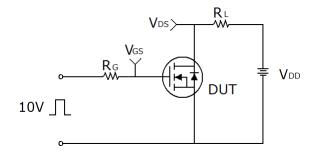
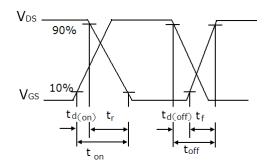



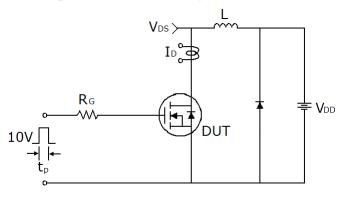
Figure 11. Transient Thermal Impedance

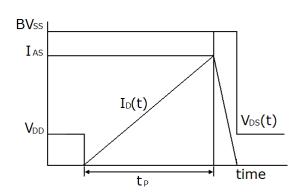


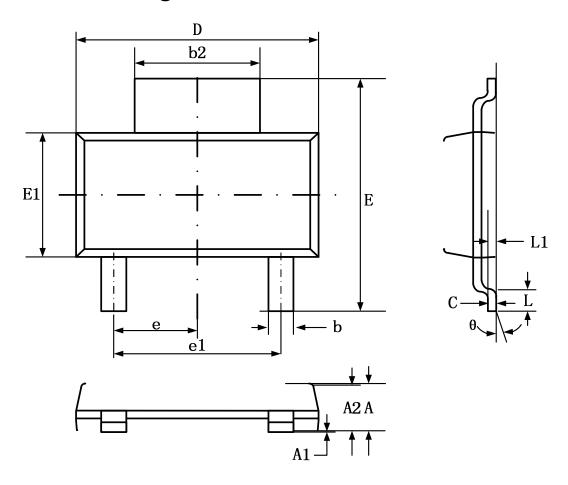

4


Test circuit


1) Gate charge test circuit & Waveform




2) Switch Time Test Circuit:


3) Unclamped Inductive Switching Test Circuit & Waveforms

SOT-223-2L Package Information

Symbol	Dimensions I	Dimensions In Millimeters		Dimensions In Inches		
Cymbol	Min.	Max.	Min.	Max.		
А		1.80		0.071		
A1	0.02	0.10	0.001	0.004		
A2	1.50	1.70	0.059	0.067		
b	0.66	0.84	0.026	0.033		
b2	2.90	3.10	0.114	0.122		
С	0.23	0.35	0.009	0.014		
D	6.30	6.70	0.248	0.264		
E	6.70	7.30	0.264	0.287		
E1	3.30	3.70	0.130	0.146		
е	2.30	BSC.	0.091	BSC.		
e1	4.60	4.60 BSC.		4.60 BSC. 0.182 BSC.		BSC.
L	0.81		0.032			
L1	0.25	0.25 BSC.		BSC.		
θ	0°	10°	0°	10°		

ATTENTION:

- Any and all NCE products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE representative nearest you before using any NCE products described or contained herein in such applications.
- NCE assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE products described or contained herein.
- Specifications of any and all NCE products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE Power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE Power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE product that you intend to use.
- This catalog provides information as of Mar. 2010. Specifications and information herein are subject to change without notice.