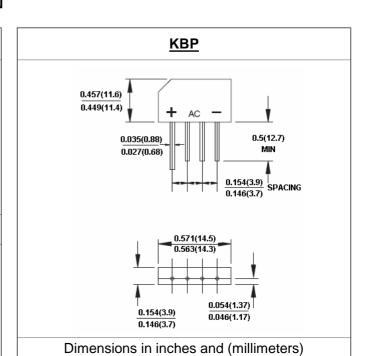
KBP3005 THRU KBP310

SINGLE PHASE GLASS PASSIVATED BRIDGE RECTIFIER

Voltage: 50 to 1000V Current:3.0A

Features


Glass passivated chip junction High case dielectric strength High surge current capability Ideal for printed circuit board

Mechanical Data

Terminal: Plated leads solderable per MIL-STD 202E, Method 208C

Case: UL-94 Class V-0 recognized Flame Retardant Epoxy

Polarity: As marked on body

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated, for capacitive load, derate current by 20%)

	Symbol	KBP3 005	KBP 301	KBP 302	KBP 304	KBP3 06	KBP3 08	KBP 310	units
Maximum repetitive peak reverse voltage	Vrrm	50	100	200	400	600	800	1000	V
Maximum RMS voltage	Vrms	35	70	140	280	420	560	700	V
Maximum DC blocking voltage	Vdc	50	100	200	400	600	800	1000	V
Maximum average forward rectified output current Ta =55℃	If(av)	3.0							А
Peak forward surge current 50 Hz single half sine-wave superimposed on rated load	Ifsm	80							Α
Maximum instantaneous forward voltage drop per diode at 3.0A	Vf	1.05						V	
Rating for fusing (t < 10ms)	l²t	32							A ² Se
Maximum DC reverse current at $Ta = 25$ °C rated DC blocking voltage per leg $Ta = 125$ °C	lr	5.0 500							μΑ
Maximum thermal resistance per leg (Note1)	Rth(ja) Rth(jc)	30 11						℃/\	
Typical junction capacitance per leg at 4.0V,1MHz	Cj	25						pF	
Operating junction and storage temperature range	Tj, Tstg	-55 to +150							$^{\circ}$

Note:

1. Thermal resistance from junction to ambient and from junction to lead mounted on P.C.B. with 0.47 x 047" (12 x 12mm) copper pads

RATINGSANDCHARACTERISTICCURVESKBP3005GTHRUKEP310

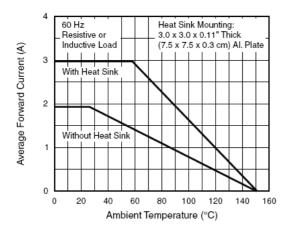


Figure 1. Forward Current Derating Curve

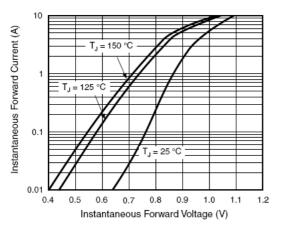


Figure 3. Typical Forward Characteristics Per Diode

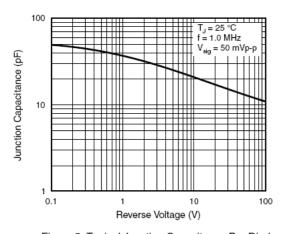


Figure 5. Typical Junction Capacitance Per Diode

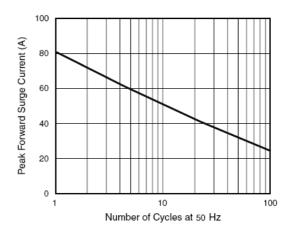


Figure 2. Maximum Non-Repetitive Peak Forward Surge Current Per Diode

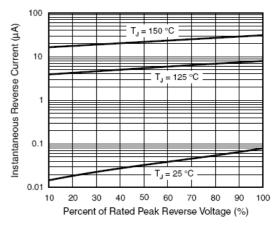


Figure 4. Typical Reverse Leakage Characteristics Per Diode