Specification for Approval Date: 2021/08/16 | Customer : | 天诚科技 | |---------------|----------------------| | TAI-TECH P/N: | TMPC0624H-100M-Z01-D | | CUSTOMER P/N: | | | DESCRIPTION: | | | QUANTITY: | | | QUANTITY: | | | REMARK: | | | | | | | | | | | | | | |---------|----|----|-----|-----|-------------|------|------|-----|-----|----|------|--|--| Cus | tom | er A | ppro | oval | Fee | dba | ck | | | | | | | | I | ш, | ᅶᇈ | + | = | 4 /1 | ++ | DH. | 1/1 | + | 71 | 71 : | | | ## 西 北 臺 慶 科 技 股 份 有 限 公司 TAI-TECH Advanced Electronics Co.. Ltd #### 代理商. 深圳市天**诚**科技有限公司 Shenzhen TsaSun Technology Co., Ltd. Room 209, 2/F, Block A, Tengfei Industrial Building, No.6, Taohua Road, Futian District, Shenzhen TEL: 0755-8335 8885 / 0755-8335 9885 E-mail: sales@tsasun.com www.tsacoil.com #### □西北臺慶科技股份有限公司 TAI-TECH Advanced Electronics Co., Ltd <u>Headquarter:</u> NO.1 YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C. TEL: +886-3-4641148 FAX: +886-3-4643565 http://www.tai-tech.com.tw E-mail: sales@tai-tech.com.tw ## □ 臺慶精密電子(昆山)有限公司 TALTECH ADVANCED ELECTRONICS(KUNSHAN) CO., LTD SHINWHA ROAD, KUNJIA HI-TECH INDUSTRIAL PARK, KUN-SHAN, JIANG-SU, CHINA TEL: +86-512-57619396 FAX: +86-512-57619688 E-mail: hui@tai-tech.com.tw ## Sales Dep. | APPROVED | CHECKED | |----------|---------| | 夏暁曼 | 夏暁曼 | | | | #### **R&D** Center | APPROVED | CHECKED | DRAWN | | | |----------|---------|-------|--|--| | 羅宜春 | 梁周虎 | 卜文娟 | | | **TAI-TECH** # **SMD Power Inductor** TMPC0624H-100M-Z01-D ## 1. Features - 1. Carbonyl Powder. - 2. Compact design. - 3. High current, low DCR, high efficiency. - 4. Very low acoustic noise and very low leakage flux noise. - 5. High reliability. - 6. 100% Lead(Pb)-Free and RoHS compliant. - 7. Operating temperature -40~+125 $^{\circ}\text{C}\textsc{(Including self temperature rise)}$ # 2. Applications Note PC power system, incl. IMVP-6 DC/DC converter . ## 3. Dimensions Series TMPC0624H | A(mm) | B(mm) | C(mm) | D(mm) | E(mm) | |---------|---------|---------|---------|---------| | 7.0±0.3 | 6.6±0.3 | 2.2±0.2 | 1.8±0.3 | 3.0±0.3 | ## **Recommend PC Board Pattern** | L(mm) | G(mm) | H(mm) | | | |--------------|----------------|-------------------|--|--| | 7.7 | 2.5 | 3.5 | | | | Note: 1. The | above PCB layo | ut reference only | | | 0.15mm and above 2. Recommend solder paste thickness at # 4. Part Numbering Н **TMPC** 0624 100 D A: Series B: Dimension C: Type Carbonyl Powder. 100=10.0uH D: Inductance E: Inductance Tolerance M=±20% F: Control S/N Marking: Black G: Date Code 100 and 1901(19 YY, 01 WW,follow production date), Customized marking # 5. Specification | Part Number | Inductance
L0 (uH) | I rms (A)
Typ | I sat (A)
Typ | DCR
(mΩ) Typ.
@25℃ | DCR
(mΩ) Max.
@25℃ | |----------------------|-----------------------|--------------------|--------------------|--------------------------|--------------------------| | TMPC0624H-100M-Z01-D | 10.0±20% | 3.2 | 5.0 | 92 | 101 | #### Note: - 1. Test frequency: Ls: 100KHz /1.0V. - 3. Testing Instrument(or equ): L: HP4284A,CH11025,CH3302,CH1320,CH1320S LCR METER / Rdc:CH16502,Agilent33420A MICRO OHMMETER. - 4. Heat Rated Current (Irms) will cause the coil temperature rise approximately $\,^{\vartriangle}\text{T}$ of 40 $^{\circlearrowright}$ - 5. Saturation Current (Isat) will cause L0 to drop approximately 30%. - 6. The part temperature (ambient + temp rise) should not exceed 125°C under worst case operating conditions. Circuit design, component, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application. - 7. Special inquiries besides the above common used types can be met on your requirement. # 6. Material List | NO | Items | Materials | | | | | |----|-------|-----------------------------------|--|--|--|--| | 1 | Core | Carbonyl Powder. | | | | | | 2 | Wire | Polyester Wire or equivalent. | | | | | | 3 | Clip | 100% Pb free solder(Ni+SnPlating) | | | | | | 4 | paint | Epoxy resin | | | | | | 5 | Ink | Halogen-free ketone | | | | | # 7.Reliability and Test Condition | Item | Performance | Test Condition | |---------------------------|---|---| | Operating temperature | -40~+125℃ (Including self - temperature rise) | | | Storage temperature | 110~+40℃,50~60%RH (Product with taping)
240~+125℃ (on board) | | | Electrical Performance 1 | est | | | Inductance | Refer to standard electrical characteristics list. | HP4284A,CH11025,CH3302,CH1320,CH1320S
LCR Meter. | | DCR | Refer to standard electrical diffaracteristics list. | CH16502,Agilent33420A Micro-Ohm Meter. | | Saturation Current (Isat) | Approximately △L30%. | Saturation DC Current (Isat) will cause L0 to drop \triangle L(%) | | Heat Rated Current (Irms) | Approximately △T40°C | Heat Rated Current (Irms) will cause the coil temperature rise $\Delta T(C)$. 1.Applied the allowed DC current 2.Temperature measured by digital surface thermometer | | Reliability Test | | | | Life Test | | Preconditioning: Run through IR reflow for 2 times.(IPC/JEDECJ-STD-020DClassification Reflow Profiles) Temperature: Refer Specification for Approval Applied current: rated current Duration: 1000±12hrs Measured at room temperature after placing for 24±2 hrs. Preconditioning: Run through IR reflow for 2 | | Load Humidity | | times.(IPC/JEĎECJ-STD-Ŏ20DClassification Reflow Profiles) Humidity: 85±2 % R.H, Temperature: 85℃±2℃ Duration: 1000hrs Min. with 100% rated current Measured at room temperature after placing for 24±2 hrs. | | Moisture Resistance | Appearance: No damage. Impedance: within±15% of initial value Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within ±15% of initial value and shall not exceed the specification value | Preconditioning: Run through IR reflow for 2 times.(IPC/JEDECJ-STD-020DClassification Reflow Profiles) 1. Baked at50 $^{\circ}\mathbb{C}$ for 25hrs, measured at room temperature after placing for 4 hrs. 2. Raise temperature to $65\pm2~\mathbb{C}$ 90-100%RH in 2.5hrs, and keep 3 hours, cool down to $25~\mathbb{C}$ in 2.5hrs. 3. Raise temperature to $65\pm2~\mathbb{C}$ 90-100%RH in 2.5hrs, and keep 3 hours, cool down to $25~\mathbb{C}$ in 2.5hrs, keep at $25~\mathbb{C}$ for 2 hrs then keep at -10 \mathbb{C} for 3 hrs 4. Keep at $25~\mathbb{C}$ 80-100%RH for 15min and vibrate at the frequency of 10 to 55 Hz to 10 Hz, measure at room temperature after placing for 1~2 hrs. | | Thermal shock | | Preconditioning: Run through IR reflow for 2 times.(IPC/JEDECJ-STD-020DClassification Reflow Profiles) Condition for 1 cycle Step1~ Step3: Refer Specification for Approval Number of cycles: 500 Measured at room fempraturc after placing for 24±2 hrs. | | Vibration | | Preconditioning: Run through IR reflow for 2 times.(IPC/JEDECJ-STD-020DClassification Reflow Profiles) Oscillation Frequency: 10~2K~10Hz for 20 minutes Equipment: Vibration checker Total Amplitude:1.52mm±10% Testing Time: 12 hours(20 minutes, 12 cycles each of 3 orientations). | | Item | Performance | | | Test C | ondition | | | | |------------------------------|---|--|------------------------------------|------------------------------|--|--|--|--| | Bending | Appearance: No damage. | Shall be mounted on a FR4 substrate of the following dimensions: >=0805 inch(2012mm):40x100x1.2mm <0805 inch(2012mm):40x100x0.8mm Bending depth: >=0805 inch(2012mm):1.2mm <0805 inch(2012mm):0.8mm duration of 10 sec. | | | | | | | | | Impedance: within±15% of initial value Inductance: within±10% of initial value Q: Shall not exceed the specification value. | Туре | Peak
value
(g's) | Normal
duration (
(ms) | | Velocity
change
(Vi)ft/sec | | | | Shock | RDC: within ±15% of initial value and shall not exceed the specification value | SMD | 50 | 11 | Half-sine | 11.3 | | | | | | Lead | 50 | 11 | Half-sine | 11.3 | | | | Solder ability | More than 95% of the terminal electrode should be covered with solder. | Preheat: 150°C,60sec Solder: Sn96.5% Ag3% Cu0.5% Temperature: 245±5°C Flux for lead free: Rosin. 9.5% Dip time: 4±1sec Depth: completely cover the termination | | | | | | | | Resistance to Soldering Heat | | Ter | mperature(°C) 260 ±5 solder temp) | | Temperature ramp/immersion rand emersion r | Number of heat cycles | | | | Terminal
Strength | Appearance: No damage. Impedance: within±15% of initial value Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within ±15% of initial value and shall not exceed the specification value e | Preconditioning: Run through IR reflow for 2 times.(IPC J-STD-020DClassification Reflow Profiles With the component mounted on a PCB with the device device being tested. This force shall be applied for seconds. Also the force shall be applied gradually a apply a shock to the component being tested. | | | | n the device to be
kg)to the side of a
applied for 60 +1 | | | Note : When there are questions concerning measurement result : measurement shall be made after 48 \pm 2 hours of recovery under the standard condition # 8. Soldering and Mounting ### (1) Soldering Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. TAI-TECH terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. #### (2) Solder re-flow: Recommended temperature profiles for re-flow soldering in Figure 1. #### (3) Soldering Iron: Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended. - · Never contact the ceramic with the iron tip - · Use a 20 watt soldering iron with tip diameter of 1.0mm - · 355℃ tip temperature (max) - · 1.0mm tip diameter (max) - · Limit soldering time to 4~5sec. Reflow times: 3 times max. Fig.1 Iron Soldering times: 1 times max. Fig.2 # 9. Packaging Information ## (1) Reel Dimension | Туре | A(mm) | B(mm) | C(mm) | D(mm) | | |----------|-----------|-------|-------------|-------|--| | 13"x16mm | 16.4+2/-0 | 100±2 | 13+0.5/-0.2 | 330 | | ### (2) Tape Dimension | Series | Size | Bo(mm) | Ao(mm) | Ko(mm) | P(mm) | W(mm) | F(mm) | t(mm) | D(mm) | |--------|------|---------|---------|---------|----------|--------|---------|-----------|---------| | ТМРС | 0624 | 7.7±0.1 | 7.0±0.1 | 2.7±0.1 | 12.0±0.1 | 16±0.3 | 7.5±0.1 | 0.35±0.05 | 1.5±0.1 | ## (3) Packaging Quantity | ТМРС | 0624 | | |-------------|-------|--| | Chip / Reel | 1500 | | | Inner box | 3000 | | | Carton | 12000 | | ## (4) Tearing Off Force The force for tearing off cover tape is 10 to 130 grams in the arrow direction under the following conditions(referenced ANSI/EIA-481-D-2008 of 4.11 stadnard). | Room Temp. | Room Humidity | Room atm | Tearing Speed | |------------|---------------|----------|---------------| | (°C) | (%) | (hPa) | mm/min | | 5~35 | 45~85 | 860~1060 | | ### **Application Notice** - · Storage Conditions - To maintain the solderability of terminal electrodes: - 1. TAI-TECH products meet IPC/JEDEC J-STD-020D standard-MSL, level 1. - 2. Temperature and humidity conditions: Less than 40°C and 60% RH. - 3. Recommended products should be used within 12 months form the time of delivery. - 4. The packaging material should be kept where no chlorine or sulfur exists in the air. - Transportation - 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils. - 2. The use of tweezers or vacuum pick up is strongly recommended for individual components. - 3. Bulk handling should ensure that abrasion and mechanical shock are minimized. # **10. Typical Performance Curves**