

BCT2020

Low Power, Low Dropout, RF-Linear Regulators

GENERAL DESCRIPTION

The BCT2020 series low-power, low-dropout, CMOS linear voltage regulators operate from a 1.6V to 5.5V input voltage and deliver up to 300mA output current. They are the perfect choice for low voltage, low power applications. A low ground current makes this part attractive for battery operated power systems. The BCT2020 series also offer low dropout voltage to prolong battery life in portable electronics. Systems requiring a quiet voltage source, such as RF applications, will benefit from the BCT2020 series low output noise and high PSRR.

Other features include a 10nA logic-controlled shutdown mode, short current limit and thermal shutdown protection.

The BCT2020 has auto-discharge function to quickly discharge VOUT in the disable status.

The BCT2020 is available in Green SOT23-5 packages. It operates over an ambient temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C .

FEATURES

- Low Dropout Voltage
- Thermal Overload Protection
- Built-In Fold Back Protection Circuit
- 20µA Low Supply Current
- 10nA Logic-Controlled Shutdown
- 1.6V to 5.5V Input Voltage Range
- Fixed Outputs of 1.2V, 1.8V, 2.8V, 3.0V, and 3.3V
- Short Auto-Discharge Function
- 300mA Output Current
- High Output Voltage Accuracy
- Quick Start-Up Time
- -40°C to +85°C Operating Temperature Range
- Available in Green SOT23-5 Packages

APPLICATIONS

Cellular Telephones Cordless Telephones PCMCIA Cards Modems MP3 Player

Hand-Held Instruments

Palmtop Computers

Electronic Planners

Portable/Battery-Powered Equipment

ORDERING INFORMATION

Order Number	V _{OUT} (V)	Package Type	Temperature Range	Marking	QTY/Reel
BCT2020EUK12-TR	1.2	SOT23-5	-40°C to +85°C	K2XX	3000
BCT2020EUK18-TR	1.8	SOT23-5	-40°C to +85°C	K8XX	3000
BCT2020EUK28-TR	2.8	SOT23-5	-40°C to +85°C	K8XX	3000
BCT2020EUK30-TR	3.0	SOT23-5	-40°C to +85°C	KOXX	3000
BCT2020EUK33-TR	3.3	SOT23-5	-40°C to +85°C	КЗХХ	3000

Note:

[&]quot;K" in Marking is product short code for BCT2020

[&]quot;XX" in Marking will be appeared as the batch code.

ABSOLUTE MAXIMUM RATINGS

IN to GND0.3V to 6.0V
Output Short-Circuit DurationInfinite
EN to GND0.3V to 6.0V
OUT,BP to GND0.3V to (VIN +0.3V)
Power Dissipation, P _D @T _A =25°C
SOT23-50.48W
Package Thermal Resistance
SOT23-5, θ _{JA} 260°C/W
Junction Temperature150°C
Storage Temperature Range65 $^{\circ}\!$
Lead Temperature (Soldering, 10 sec)260 $^{\circ}\mathrm{C}$
ESD Susceptibility
HBM4000V
MM400V

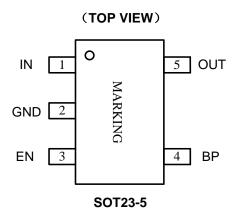
RECOMMENDED OPERATING CONDITIONS

Operating Voltage Range	1.6\	V to 5.5V
Operating Temperature Range	40℃	to +85℃

OVERSTRESS CAUTION

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Broadchip recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

Broadchip reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Broadchip sales office to get the latest datasheet.

PIN CONFIGURATION (TOP VIEW)

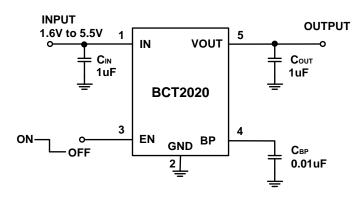
PIN DESCRIPTION

PIN	NAME	FUNCTION
1	IN	Regulator Input. Supply voltage can range from 1.6V to 5.5V. Bypass with a 1µF capacitor to GND.
2	GND	Ground.
3	EN	Enable Pin. This pin has an internal pull-down resistor. A logic low reduces the supply current to less than 1µA.Connect to IN for normal operation.
4	ВР	Reference-Noise Bypass Pin (fixed voltage version only). Bypass with a low-leakage 0.01µF ceramic capacitor for reduced noise at the output. The capacitor is recommended to be placed very close to the pin for high PSRR.
5	OUT	Regulator Output.

ELECTRICAL CHARACTERISTICS

(($V_{IN} = V_{OUT(NOMINAL)} + 0.5V$ or 1.6V, whichever is greater, Full = -40 $^{\circ}$ C to +85 $^{\circ}$ C, unless otherwise noted.)

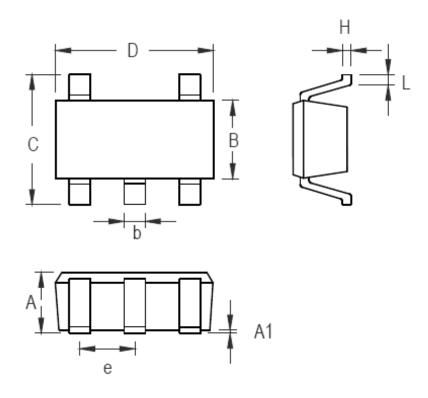
PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS		
Input Voltage	V _{IN}			+25℃	1.6		5.5	V		
Output Voltage Accuracy		I _{OUT} = 0.1mA		+25℃	-2.5		+2.5	%		
Maximum Output Current (1)					+25℃	300			mA	
Current Limit	I _{LIM}				+25℃	360	560		mA	
Supply Pin Current	lα	No Load, V _{EN} = V _{IN}			+25℃		20	26	μΑ	
			1.2V	≤ V _{OUT} < 1.8V	+25℃		590	800		
			1.8V	≤ V _{OUT} < 2.5V	+25℃		320	420		
Dropout Voltage (2)	V_{DROP}	I _{OUT} = 300mA	2.5V	≤ V _{OUT} < 3.0V	+25℃		215	280	mV	
			3.0V	≤ V _{OUT} < 3.6V	+25℃		190	250)	
	41/	$V_{IN} = 1.6V$ or $(V_{OUT} +$	1.8V	≤ V _{OUT} ≤ 3.3V	+25℃		0.01	0.06		
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	0.5V) to 5.5V, $V_{OUT} < 1.8V \text{ or } V_{OUT}$ $I_{OUT} = 1\text{mA}$ $> 3.3V$		+25℃		0.01	0.1	%/V		
Load Regulation	ΔV_{OUT}	I _{OUT} = 0.1mA to 300mA		+25℃		12	40	mV		
Short Current Limit	I _{SHORT}	V _{OUT} = 0V		+25℃		200		mA		
		$C_{BP} = 0\mu F, \ I_{OUT} = 30 mA, \qquad \qquad f = 217 Hz$ $C_{OUT} = 1\mu F, \ V_{IN} = V_{OUT} + 1V, \qquad \qquad f = 1 kHz$ $\Delta V_{RIPPLE} = 0.2 V_{P.P}$		+25℃		80				
Power Supply Rejection Ratio	PSRR			f = 1kHz	+25℃		70		- dB	
Tower Supply Rejection Ratio		$C_{BP} = 0.01 \mu F, \ I_{OUT} = 30 mA,$ $C_{OUT} = 1 \mu F, \ V_{IN} = V_{OUT} + 1V,$ $\Delta V_{RIPPLE} = 0.2 V_{P.P}$ $f = 217 Hz$		f = 217Hz	+25℃		82			
				f = 1kHz	+25℃		70			
	e _n	100kHz,		I _{OUT} = 0mA	+25℃		100			
Output Voltage Noise				I _{OUT} = 30mA	+25℃		200			
		100kHz, C _{OUT} = 1μF, V _{OUT} =		I _{OUT} = 0mA	+25℃		30		μVRMS	
				I _{OUT} = 30mA	+25℃		75			
Output Voltage Temperature Coefficient (3)	$\frac{\Delta V_{OUT}}{\Delta T_{A} \times V_{OUT}}$	I _{OUT} = 0.1mA		Full		30		ppm/℃		


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
SHUTDOWN	SHUTDOWN							
EN Input Threshold	V _{IH}	V _{IN} = 1.6V to 5.5V	Full	1.5			V	
Liv input Trireshold	V_{IL}	VIN = 1.0V to 3.3V	Full			0.4		
EN Input Ding Current	I _{BH}	V _{EN} = 5.5V	Full		0.8	2		
EN Input Bias Current	I _{BL}	V _{EN} = 0V	Full		0.01	1	μΑ	
Shutdown Supply Current	I _{SHDN}	V _{EN} = 0V	Full		0.01	1	μΑ	
Start-Up Time (4)	t _{STR}	$C_{OUT} = 1\mu F$, No Load, $C_{BP} = 0\mu F$	+25℃		30		μs	
R _{ON} of Discharge MOSFET		V _{IN} = 4.0V, V _{EN} = 0V	+25℃		50		Ω	
THERMAL PROTECTION								
Thermal Shutdown Temperature	T _{SHDN}				140		$^{\circ}$	
Thermal Shutdown Hysteresis	ΔT_{SHDN}				15		$^{\circ}$ C	

NOTES:

- Maximum output current is affected by the PCB layout, size of metal trace, the thermal conduction path between metal layers, ambient temperature and the other environment factors of system. Attention should be paid to the dropout voltage when VIN < VOUT + VDROP.
- 2. The dropout voltage is defined as VIN VOUT, when VOUT is 100mV below the value of VOUT.
- 3. Output voltage temperature coefficient is defined as the worst-case voltage change divided by the total temperature range.
- 4. Time needed for VOUT to reach 90% of final value.

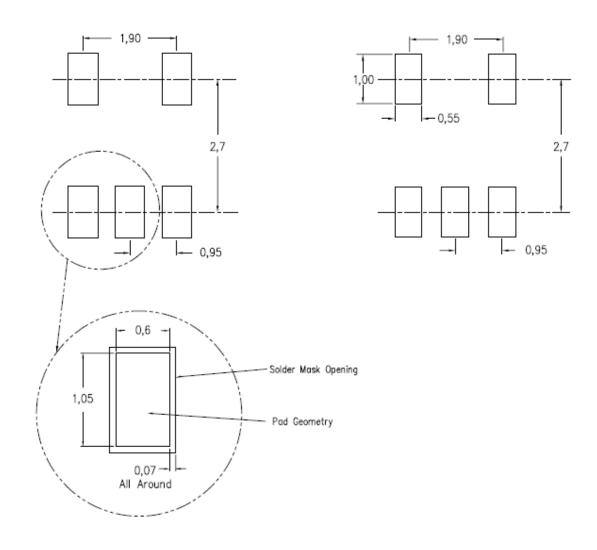
TYPICAL APPLICATION CIRCUIT



SOT23-5

PACKAGE OUTLINE DIMENSIONS

SOT23-5


Symbol	Dimensions In Millimeters				
Symbol	Min	Max			
А	1.05	1.15			
A1	0.03	0.15			
В	1.5	1.7			
b	0.28	0.45			
С	2.75	3.05			
D	2.82	3.02			
е	0.95(BSC)				
Н	0.12 0.23				
Ĺ	0.35 0.55				

SOT23-5 Surface Mount Package

LAND PATTERN DATA

SOT23-5

RECOMMENDED PCB LAYOUT PATTERN (Unit: mm)