

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

www.onsemi.com

FDP2D3N10C / FDPF2D3N10C

N-Channel Shielded Gate PowerTrench[®] MOSFET 100 V, 222 A, 2.3 m Ω

Features

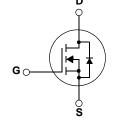
- Max $r_{DS(on)} = 2.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 100 \text{ A}$
- Extremely Low Reverse Recovery Charge, Qrr

TO-220

- 100% UIL Tested
- RoHS Compliant

General Description

This N-Channel MV MOSFET is produced using ON Semiconductor's advanced PowerTrench® process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.


Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor drives and Uninterruptible Power Supplies
- Micro Solar Inverter

TO-220F

MOSFET Maximum Ratings $T_C = 25$ °C unless otherwise noted.

Symbol	Parameter		Rati	Units			
Symbol	Faranteter			FDP2D3N10C	FDPF2D3N10C	Ullits	
V_{DS}	Drain to Source Voltage			100	100	V	
V_{GS}	Gate to Source Voltage			±20	±20	V	
	Drain Current -Continuous	T _C = 25°C	(Note 3)	222*	222*		
I_D	-Continuous	T _C = 100°C	(Note 3)	157*	157*	Α	
	-Pulsed		(Note 1)	888	888		
E _{AS}	Single Pulse Avalanche Energy		(Note 2)	1176		mJ	
В	Power Dissipation	T _C = 25°C		214	45	W	
P_{D}	Power Dissipation	T _A = 25°C		2.4	2.4	VV	
T_J , T_{STG}	Operating and Storage Junction Te	emperature Range		-55 to	+175	°C	

^{*} Drain current limited by maximum junction temperature. Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	FDP2D3N10C	FDPF2D3N10C	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.7	3.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	62.5	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Packing Method	Quantity
FDP2D3N10C	FDP2D3N10C	TO-220	Tube	50 units
FDPF2D3N10C	FDPF2D3N10C	TO-220F	Tube	50 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		70		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μΑ
DSS	Zero Gate voltage Drain Current	V _{DS} = 80 V, T _J = 150°C			500	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 700 \mu A$	2.0	3.0	4.0	V
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 100 \text{ A}$		2.1	2.3	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 100 \text{ A}$		222		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz		7980	11180	pF
C _{oss}	Output Capacitance			4490	6290	pF
C _{rss}	Reverse Transfer Capacitance			40	75	pF
R_g	Gate Resistance		0.1	0.8	1.8	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		42	67	ns
t _r	Rise Time	V _{DD} = 50 V, I _D = 100 A,	35	56	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	74	118	ns
t _f	Fall Time		32	57	ns
Q_g	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{DD} = 50 \text{ V},$	108	152	nC
Q_{gs}	Gate to Source Gate Charge	V _{DD} = 50 V,	36		nC
Q_{gd}	Gate to Drain "Miller" Charge	IB = 100 A	22		nC
Q _{oss}	Output Charge	V _{DD} = 50 V, V _{GS} = 0 V	297		nC

Drain-Source Diode Characteristic

IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	222	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	888	Α
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 100 A		0.9	1.3	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 50 V,		107	172	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 100 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$		191	306	nC
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 50 V,		97	155	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 100 \text{ A}, dI_F/dt = 300 \text{ A/}\mu\text{s}$		492	788	nC

Notes:

- 1. Pulsed Id please refer to Figure.11 and Figure.12 "Forward Bias Safe Operating Area" for more details.
- $2. \; E_{AS} \; \text{of} \; \; 1176 \; \text{mJ} \; \; \text{is based on starting T}_{J} = 25 \; ^{\circ}\text{C}, \; L = 3 \; \text{mH}, \; I_{AS} = 28 \; \text{A}, \; V_{DD} = 90 \; \text{V}, \; V_{GS} = 10 \; \text{V}. \; \; 100\% \; \text{test at L} = 0.1 \; \text{mH}, \; I_{AS} = 89 \; \text{A}. \; \; \text{M}_{AS} = 10 \; \text{M}_{$
- 3. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

Typical Characteristics $T_J = 25$ °C unless otherwise noted.

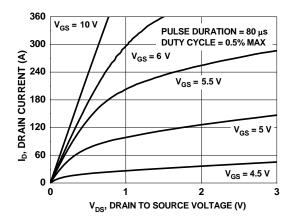


Figure 1. On-Region Characteristics

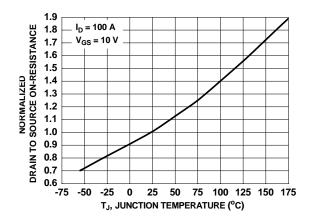


Figure 3. Normalized On-Resistance vs. Junction Temperature

Figure 5. Transfer Characteristics

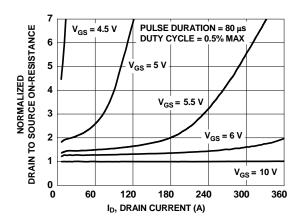


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

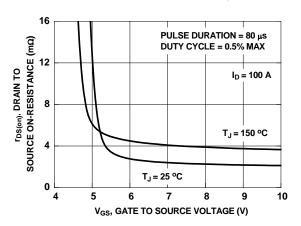


Figure 4. On-Resistance vs. Gate to Source Voltage

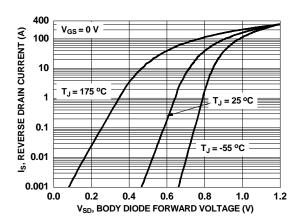


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics $T_J = 25 \, ^{\circ}\text{C}$ unless otherwise noted.

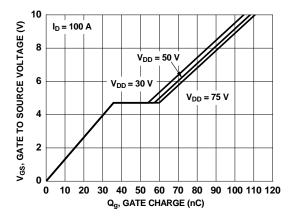


Figure 7. Gate Charge Characteristics

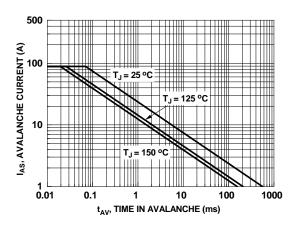


Figure 9. Unclamped Inductive Switching Capability

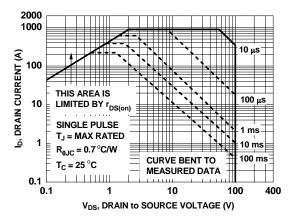


Figure 11. Forward Bias Safe Operating Area for FDP2D3N10C

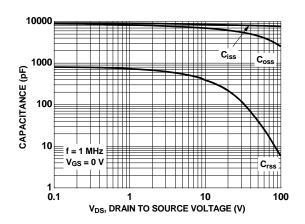


Figure 8. Capacitance vs. Drain to Source Voltage

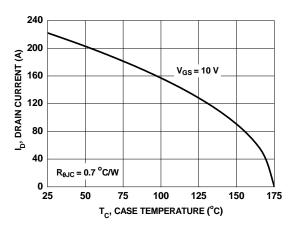


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

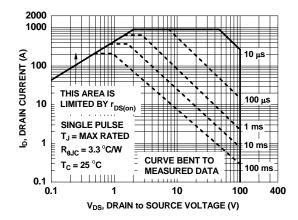
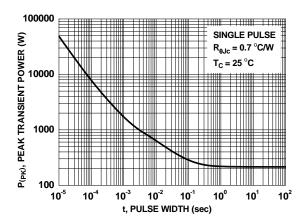



Figure 12. Forward Bias Safe Operating Area for FDPF2D3N10C

Typical Characteristics $T_J = 25$ °C unless otherwise noted.

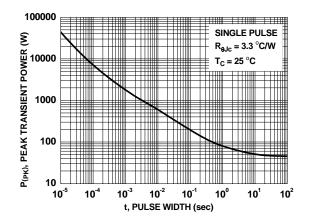


Figure 13. Single Pulse Maximum Power Dissipation for FDP2D3N10C

Figure 14. Single Pulse Maximum Power Dissipation for FDPF2D3N10C

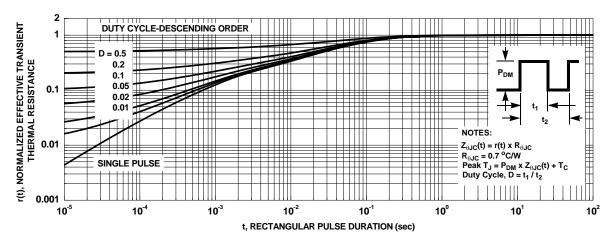
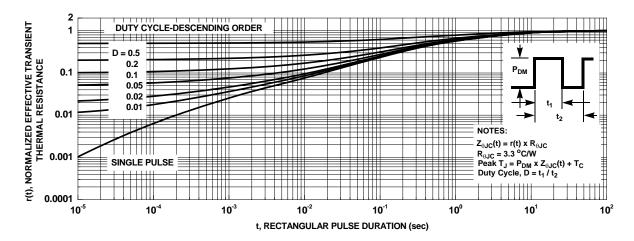
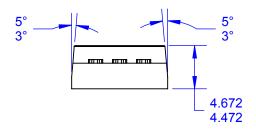
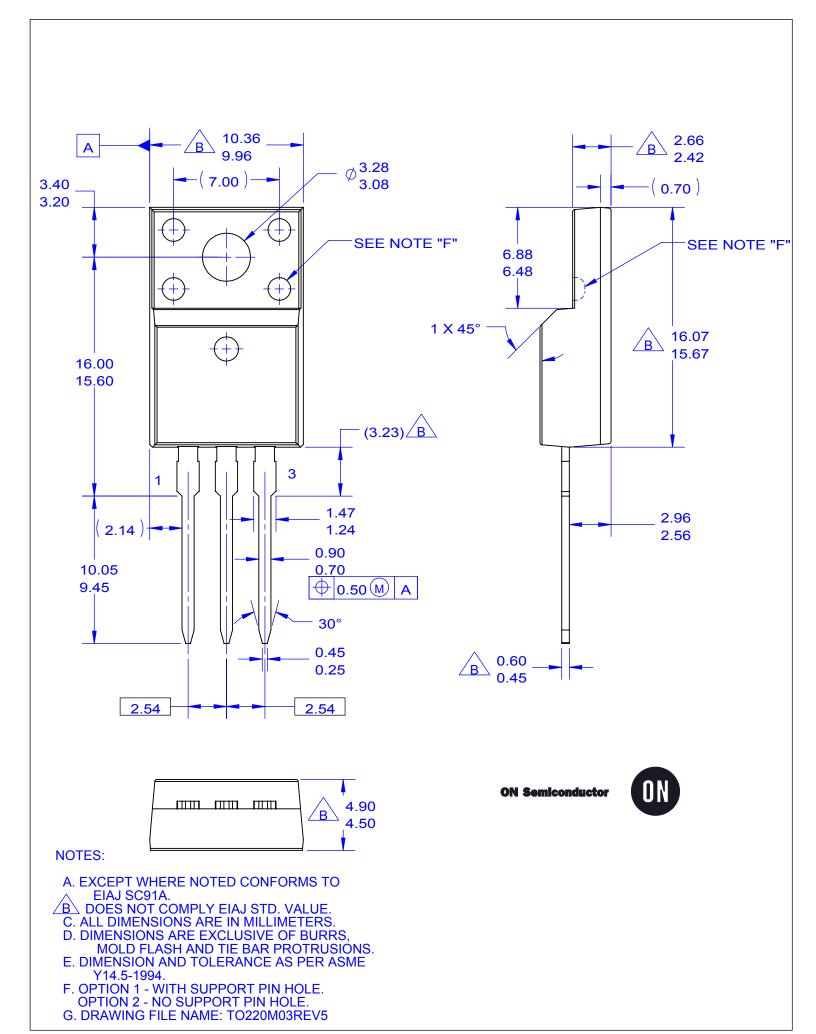


Figure 15. Junction-to-Case Transient Thermal Response Curve for FDP2D3N10C


Figure 16. Junction-to-Case Transient Thermal Response Curve for FDPF2D3N10C

NOTES:

- A. PACKAGE REFERENCE: JEDEC TO220 **VARIATION AB**
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- E. MAX WIDTH FOR F102 DEVICE = 1.35mm. F. DRAWING FILE NAME: TO220T03REV4.
- G. FAIRCHILD SEMICONDUCTOR.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative