# **3.3 V/5 V, 20 Mbit/sec, Logic Gate Optocoupler in Stretched Body SOP 6-Pin**

#### Description

The FOD8173 series packaged in a stretched body 6–pin small outline plastic package, consists of an aluminum gallium arsenide (AlGaAs) light emitting diode and a CMOS detector IC comprises an integrated photodiode, a high speed transimpedance amplifier and a voltage comparator with a totem–pole output driver. The electrical and switching characteristics are guaranteed over the extended industrial temperature range of  $-40^{\circ}$ C to  $100^{\circ}$ C and a V<sub>DD</sub> range of 3 V to 5.5 V.

#### Features

- FOD8173T 8 mm Creepage and Clearance Distance, and 0.4 mm insulation distance to achieve reliable and high voltage insulation
- High Noise Immunity characterized by common mode transient immunity (CMTI)
- 20 kV/µs Minimum CMTI
- 3.3 V and 5 V CMOS Compatibility
- Specifications Guaranteed Over 3 V to 5.5 V supply voltage and -40 to 100°C extended industrial temperature range
- High Speed
  - 20 Mbit/sec Date Rate (NRZ)
  - 55 ns max. Propagation Delay
  - 20 ns max. Pulse Width Distortion
- Safety and regulatory pending approvals
  - UL1577, 5,000 VAC<sub>RMS</sub> for 1 min.
  - DIN-EN/IEC60747-5-5, 1,140 V peak working insulation voltage for FOD8173T

#### **Typical Applications**

- Microprocessor System Interface
  SPI, I2C
- Industrial Field Bus Communications
  - DeviceNet, CAN, RS485
- Programmable Logic Control
- Isolated Data Acquisition System
- Voltage Level Translator



# **ON Semiconductor®**

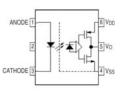
www.onsemi.com



SOP 6 PINS

#### MARKING DIAGRAM




- ON = Corporate Name
- 8173 = Device Number

V

Р

- = DIN EN/IEC60747-5-5 Option
- XX = Two Digit Year Code
- YY = Digit Work Week
  - = Assembly Package Code

#### **PIN CONNECTIONS**



#### **TRUTH TABLE**

| LED | vo   |
|-----|------|
| Off | High |
| On  | Low  |

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 9 of this data sheet.

## SAFETY AND INSULATIONS RATING

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

#### Table 1.

| Parameter                                            |            | Charact   | teristics |
|------------------------------------------------------|------------|-----------|-----------|
|                                                      |            | FOD8173   | FOD8173T  |
|                                                      | < 150 VRMS | I–IV      | I–IV      |
| Installation Classifications per                     | < 300 VRMS | I–IV      | I–IV      |
| DIN VDE 0110/1.89 Table 1, For<br>Rated ains Voltage | < 450 VRMS | I–III     | I–IV      |
|                                                      | < 600 VRMS | I–III     | I–III     |
| Climatic Classification                              |            | 40/100/21 | 40/100/21 |
| Pollution Degree (DIN VDE 0110/1.89)                 |            | 2         | 2         |
| Comparative Tracking Index                           |            | 175       | 175       |

#### Table 2.

|                                                     |                                                                                                                              | Charac            |                   |                |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|
| Symbol                                              | Parameter                                                                                                                    | FOD8173           | FOD8173T          | Unit           |
|                                                     | Input-to-Output Test Voltage, Method B, VIORM x 1.875 = VPR, 100%<br>Production Test with tm = 1 s, Partial Discharge < 5 pC | 1,671             | 2,137             | Vpeak          |
| V <sub>PR</sub>                                     | Input-to-Output Test Voltage, Method A, VIORM x 1.6 = VPR, Type and Sample Test with tm = 10 s, Partial Discharge < 5 pC     | 1,426             | 1,824             | Vpeak          |
| V <sub>IOR</sub> M                                  | Maximum Working Insulation Voltage                                                                                           | 891               | 1,140             | Vpeak          |
| V <sub>IOT</sub> M                                  | Highest Allowable Over-Voltage                                                                                               | 6,000             | 8,000             | Vpeak          |
|                                                     | External Creepage                                                                                                            | ≥ 8.0             | ≥ 8.0             | mm             |
|                                                     | External Clearance                                                                                                           | ≥ 7.0             | ≥ 8.0             | mm             |
| DTI                                                 | Distance Through Insulation (Insulation Thickness)                                                                           | ≥ 0.4             | ≥ 0.4             | mm             |
| T <sub>S</sub><br>I <sub>S,INPUT</sub><br>PS,OUTPUT | Safety Limit Values – Maximum Values Allowed in the Event of a Failure,<br>Case Temperature<br>Input Current<br>Output Power | 150<br>200<br>300 | 150<br>200<br>300 | °C<br>mA<br>mW |
| R <sub>IO</sub>                                     | Insulation Resistance at $T_S$ , VIO = 500 V                                                                                 | >10 <sup>9</sup>  | >10 <sup>9</sup>  | Ω              |

| Symbol                 | Parameter                                                     | Value             | Units |
|------------------------|---------------------------------------------------------------|-------------------|-------|
| T <sub>STG</sub>       | Storage Temperature                                           | -40 to +125       | °C    |
| T <sub>OPR</sub>       | Operating Temperature                                         | -40 to +100       | °C    |
| TJ                     | Junction Temperature                                          | -40 to +125       | °C    |
| T <sub>SOL</sub>       | Lead Solder Temperature (Refer to Reflow Temperature Profile) | 260 for 10sec     | °C    |
| Input Characteristics  |                                                               |                   |       |
| ١ <sub>F</sub>         | Average Forward Input Current                                 | 20                | mA    |
| V <sub>R</sub>         | Reverse Input Voltage                                         | 5.0               | V     |
| P <sub>DI</sub>        | Input Power Dissipation (Note 1)                              | 40                | mW    |
| Output Characteristics |                                                               |                   |       |
| V <sub>DD</sub>        | Supply Voltage                                                | 0 to 6.0          | V     |
| Vo                     | Output Voltage                                                | -0.5 to VDD + 0.5 | V     |
| Ι <sub>Ο</sub>         | Average Output Current                                        | 10                | mA    |
| P <sub>DO</sub>        | Output Power Dissipation (Note 1)                             | 70                | mW    |

## Table 3. ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub> = 25°C unless otherwise specified)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

## **RECOMMENDED OPERATING CONDITIONS**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

#### Table 4.

| Symbol          | Parameter                     | Min. | Max. | Unit |
|-----------------|-------------------------------|------|------|------|
|                 |                               |      |      |      |
| T <sub>A</sub>  | Ambient Operating Temperature | -40  | +100 | °C   |
| V <sub>DD</sub> | Supply Voltages (Note 2)      | 3.0  | 5.5  | V    |
| V <sub>FL</sub> | Logic Low Input Voltage       | 0    | 0.8  | V    |
| I <sub>OL</sub> | Logic Low Output Current      | 0    | 7    | mA   |
| I <sub>FH</sub> | Logic High Input Current      | 5.0  | 16   | mA   |

#### **Table 5. ISOLATION CHARACTERISTICS**

(Apply over all recommended conditions, typical value is measured at TA = 25°C)

| Symbol           | Parameter                      | Conditions                                                                                                                 | Min.  | Тур.             | Max. | Units              |
|------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|------------------|------|--------------------|
| V <sub>ISO</sub> | Input–Output Isolation Voltage | $\begin{array}{l} TA = 25^{\circ}C, \ R.H. < 50\%, \ t = 1.0min, \\ II-O \ \leq \ 20\mu A \\ (Notes \ 3, \ 4) \end{array}$ | 5,000 |                  |      | V <sub>ACRMS</sub> |
| R <sub>ISO</sub> | Isolation Resistance           | VI-O = 500V (Note 3)                                                                                                       |       | 10 <sup>11</sup> |      | Ω                  |
| C <sub>ISO</sub> | Isolation Capacitance          | VI–O = 0V, freq=1.0Mhz (Note 3)                                                                                            |       | 1.0              |      | pF                 |

1. No derating required to 100°C.

2. 0.1 µF bypass capacitor must be connected between 4 and 6.

3. Device is considered a two terminal device: Pins 1, 2 and 3 are shorted together and Pins 4, 5, and 6 are shorted together.

4. 5,000 VAC<sub>RMS</sub> for 1 minute duration is equivalent to 6,000 VAC<sub>RMS</sub> for 1 second duration.

#### **Table 6. ELECTRICAL CHARACTERISTICS**

(Apply over all recommended conditions,  $T_A = -40^{\circ}C$  to  $+100^{\circ}C$ ,  $3.0V \le V_{DD} \le 5.5V$ , unless otherwise specified. Typical value is measured at  $T_A = 25^{\circ}C$  and  $V_{DD} = 3.3V$ .)

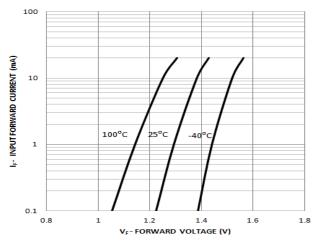
| Symbol                                   | Parameter                                                                                  | Conditions                                                                            | Min.                  | Тур.   | Max. | Units |
|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--------|------|-------|
| INPUT CHA                                | RACTERISTICS                                                                               |                                                                                       |                       |        | •    | •     |
| V <sub>F</sub>                           | Forward Voltage                                                                            | I <sub>F</sub> = 10 mA                                                                | 1.0                   | 1.35   | 1.80 | V     |
| BV <sub>R</sub>                          | Input Reverse Breakdown<br>Voltage                                                         | I <sub>R</sub> = 10 μA                                                                | 5.0                   | 18     |      | V     |
| I <sub>FHL</sub>                         | Threshold Input Current                                                                    |                                                                                       |                       | 2.8    | 5.0  | mA    |
| OUTPUT CH                                | IARACTERISTICS                                                                             | · ·                                                                                   | •                     |        |      | •     |
|                                          |                                                                                            | I <sub>O</sub> = 20 uA, I <sub>F</sub> = 10 mA                                        |                       | 0.0027 | 0.01 |       |
| V <sub>OL</sub> Logic Low Output Voltage | I <sub>O</sub> = 4 mA, I <sub>F</sub> = 10 mA                                              |                                                                                       | 0.27                  | 0.8    | V    |       |
|                                          | $V_{DD} = 3.3 \text{ V}, \text{ I}_{O} = -20 \ \mu\text{A}, \text{ I}_{F} = 0 \ \text{mA}$ | V <sub>DD</sub> – 0.1                                                                 | 3.3                   |        |      |       |
|                                          |                                                                                            | $V_{DD} = 3.3 \text{ V}, I_O = -4 \text{ mA}, I_F = 0 \text{ mA}$                     | V <sub>DD</sub> – 0.5 | 3.1    |      |       |
| V <sub>OH</sub>                          | Logic High Output Voltage                                                                  | $V_{DD}$ = 5.0 V, I <sub>O</sub> =-20 µA, I <sub>F</sub> = 0 mA                       | V <sub>DD</sub> – 0.1 | 5.0    |      | V     |
|                                          |                                                                                            | $V_{DD} = 5.0 \text{ V}, \text{ I}_{O} = -4 \text{ mA}, \text{ I}_{F} = 0 \text{ mA}$ | V <sub>DD</sub> – 0.5 | 4.9    |      |       |
|                                          | Logic Low Output Supply                                                                    | I <sub>F</sub> = 10 mA, V <sub>DD</sub> = 3.3 V                                       |                       | 3.3    | 4.8  |       |
| IDDL                                     | Current                                                                                    | I <sub>F</sub> = 10 mA, V <sub>DD</sub> = 5.0 V                                       |                       | 4.0    | 5.0  |       |
|                                          | Logic High Output Supply                                                                   | I <sub>F</sub> = 0 mA, V <sub>DD</sub> = 3.3 V                                        |                       | 3.3    | 4.8  | mA    |
| IDDH                                     | Current                                                                                    | $l = -0 m \Lambda / l = -5 0 / l$                                                     |                       | 4.0    | 5.0  | 1     |

#### Table 7. SWITCHING CHARACTERISTICS

Apply over all recommended conditions, ( $T_A = -40^{\circ}C$  to  $+100^{\circ}C$ ,  $3.0V \le V_{DD} \le 5.5V$ ,  $I_F = 5$  mA), unless otherwise specified. Typical value is measured at  $T_A = 25^{\circ}C$  and  $V_{DD} = 3.3V$ .

 $I_F = 0 \text{ mA}, V_{DD} = 5.0 \text{ V}$ 

4.0


5.0

| Symbol                | Parameter                                                        | Conditions                                                                                              | Min. | Тур. | Max. | Units    |
|-----------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|------|------|----------|
| Date Rate<br>(Note 5) |                                                                  |                                                                                                         |      |      | 20   | Mbit/sec |
| t <sub>PW</sub>       | Pulse Width                                                      |                                                                                                         | 50   |      |      | ns       |
| t <sub>PHL</sub>      | Propagation Delay Time to<br>Logic Low Output                    | C <sub>L</sub> = 15pF                                                                                   |      | 25   | 55   | ns       |
| t <sub>PLH</sub>      | Propagation Delay Time to<br>Logic High Output                   | C <sub>L</sub> = 15pF                                                                                   |      | 25   | 55   | ns       |
| PWD                   | Pulse Width Distortion,<br>  t <sub>PHL</sub> – t <sub>PLH</sub> | C <sub>L</sub> = 15pF                                                                                   |      | 5.5  | 20   | ns       |
| t <sub>R</sub>        | Output Rise Time (10% – 90%)                                     | C <sub>L</sub> = 15pF                                                                                   |      | 7.0  |      | ns       |
| t <sub>F</sub>        | Output Fall Time (90% – 10%)                                     | C <sub>L</sub> = 15pF                                                                                   |      | 7.0  |      | ns       |
| CM <sub>H</sub>       | Common Mode Transient<br>Immunity at Output High                 | $I_F = 0mA, V_O > 0.8V_{DD},$<br>$V_{CM} = 1000V, T_A = 25^{\circ}C$ (Note 6)                           | 20   | 40   |      | kV/μs    |
| CM <sub>L</sub>       | Common Mode Transient<br>Immunity at Output Low                  | I <sub>F</sub> = 5mA, V <sub>O</sub> < 0.8V,<br>V <sub>CM</sub> = 1000V, T <sub>A</sub> = 25°C (Note 6) | 20   | 40   |      | kV/μs    |

5. Data rate is based on 10 MHz, 50% NRZ pattern with a 50 nsec minimum bit time.

6. Common mode transient immunity at output high is the maximum tolerable positive dVcm/dt on the leading edge of the common mode impulse signal, Vcm, to assure that the output will remain high. Common mode transient immunity at output low is the maximum tolerable negative dVcm/dt on the trailing edge of the common pulse signal, Vcm, to assure that the output will remain low.

#### TYPICAL CHARACTERISTICS



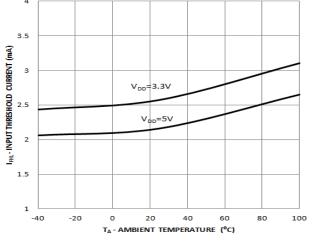



Figure 1. Input Forward Current vs. Forward Voltage

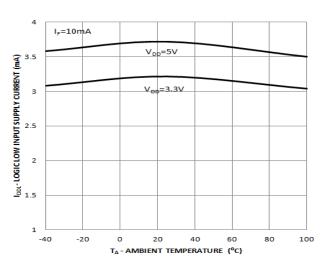



Figure 3. Logic Low Input Supply Current vs. Ambient Temperature

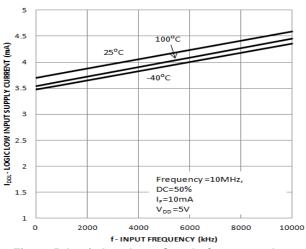



Figure 5. Logic Low Input Supply Current vs. Input Frequency ( $V_{DD} = 5 V$ )

Figure 2. Input Threshold Current vs. Ambient Temperature

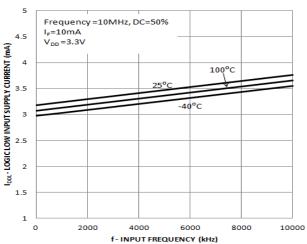
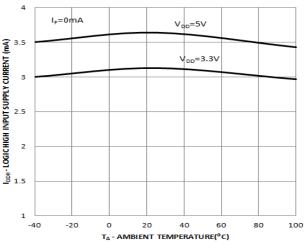
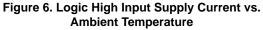
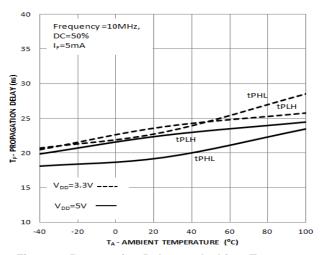






Figure 4. Logic Low Input Supply Current vs. Input Frequency (V<sub>DD</sub> = 3.3 V)







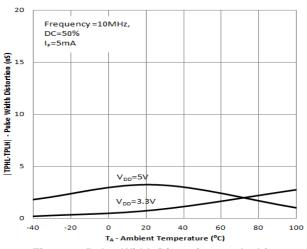



Figure 7. Propagation Delay vs. Ambient Temperature



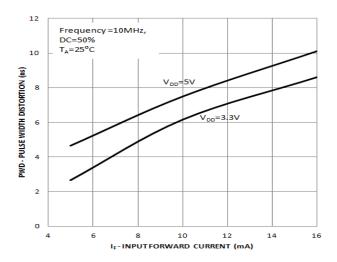



Figure 9. Pulse Width Distortion vs. Input Forward Current

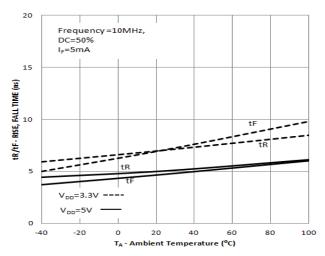



Figure 11. Rise, Fall Time vs. Ambient Temperature

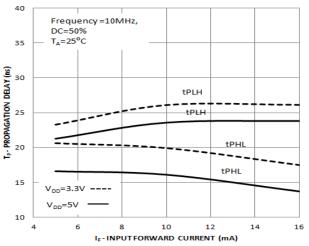
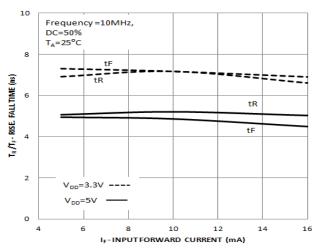
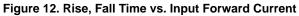





Figure 10. Propagation Delay vs. Input Forward Current





### SCHEMATICS

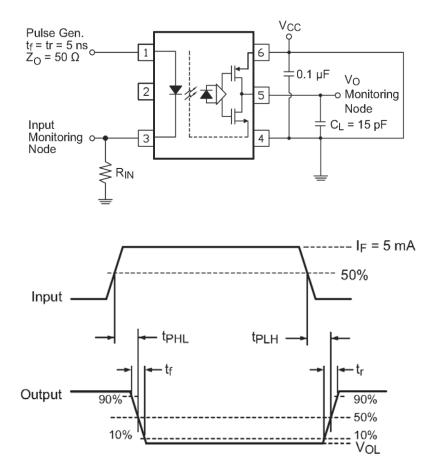



Figure 13. Test Circuit for Propagation Delay Time, Rise Time and Fall Time

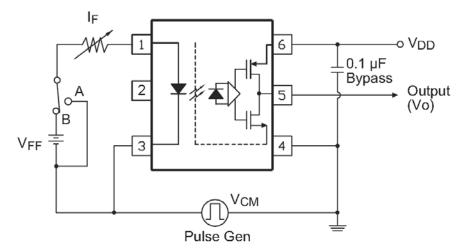
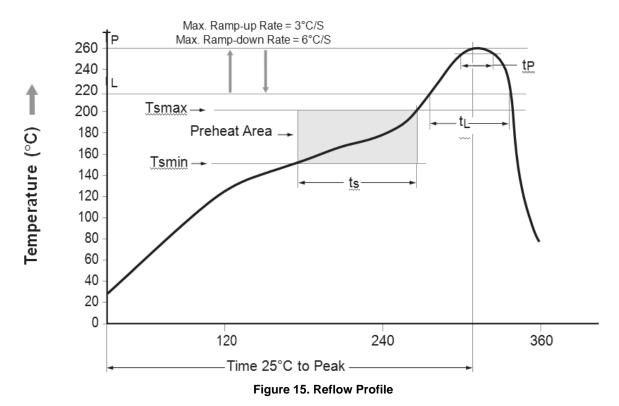
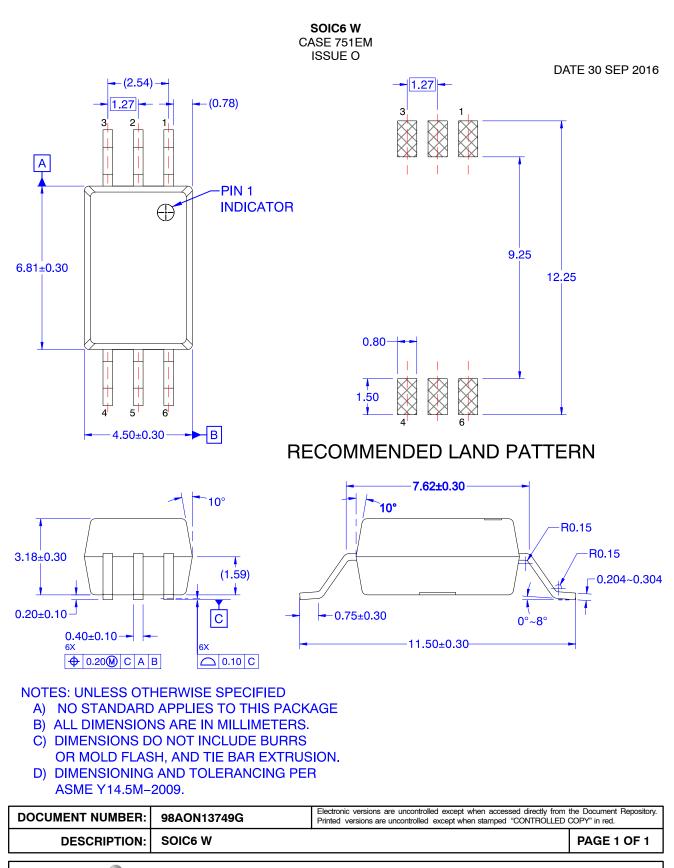




Figure 14. Test Circuit for Instantaneous Common Mode Rejection Voltage

### **REFLOW PROFILE**




#### Table 8. REFLOW PROFILE

| Profile Feature                 | Pb–Free Assembly Profile |
|---------------------------------|--------------------------|
| Temperature Min. (Tsmin)        | 150°C                    |
| Temperature Max. (Tsmax)        | 200°C                    |
| Time (tS) from (Tsmin to Tsmax) | 60 – 120 seconds         |
| Ramp-up Rate (tL to tP)         | 3°C/second max           |
| Liquidous Temperature (TL)      | 217°C                    |
| Time (tL) Maintained Above (TL) | 60 – 150 seconds         |
| Peak Body Package Temperature   | 260°C + 0°C / –5°C       |
| Time (tP) within 5°C of 260°C   | 30 seconds               |
| Ramp-down Rate (TP to TL)       | 6°C / second max.        |
| Time 25°C to Peak Temperature   | 8 minutes max.           |

#### Table 9. ORDERING INFORMATION

| Part Number | Package                                                                       | Packing Method                       |
|-------------|-------------------------------------------------------------------------------|--------------------------------------|
| FOD8173     | Stretched Body SOP 6-Pin                                                      | Tube (100 units per tube)            |
| FOD8173R2   | Stretched Body SOP 6-Pin                                                      | Tape and Reel (1,000 units per reel) |
| FOD8173V    | Stretched Body SOP 6–Pin,<br>DIN EN/IEC60747–5–5 Option (pending)             | Tube (100 units per tube)            |
| FOD8173R2V  | Stretched Body SOP 6–Pin,<br>DIN EN/ IEC60747–5–5 Option (pending)            | Tape and Reel (1,000 units per reel) |
| FOD8173T    | Stretched Body SOP 6-Pin, Wide Lead                                           | Tube (100 units per tube)            |
| FOD8173TR2  | Stretched Body SOP 6-Pin, Wide Lead                                           | Tape and Reel (1,000 units per reel) |
| FOD8173TV   | Stretched Body SOP 6–Pin, Wide Lead,<br>DIN EN/IEC60747–5–5 Option (pending)  | Tube (100 units per tube)            |
| FOD8173TR2V | Stretched Body SOP 6–Pin, Wide Lead,<br>DIN EN/ IEC60747–5–5 Option (pending) | Tape and Reel (1,000 units per reel) |



ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the right or there.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative